
Voice Modulator

Adam Rosenfield
Lunduo Ye

6.111 Final Project

Spring 2007
TA: Amir Hirsch

Abstract

 We designed, implemented, and tested a voice modulation system, which takes in audio

data and modulates the pitch of the data. The modulator can change the pitch of vocal data while

preserving vocal formants, maintaining intelligible speech over a wide range of frequencies. The

system is implemented on a field-programmable gate array (FPGA) and operates in real time.

Table of Contents

1. Introduction
2. Module Descriptions and Implementations

2.1. Audio
2.1.1. AC’97 Controller
2.1.2. Fourier Transform
2.1.3. Spectrum Analyzer
2.1.4. Voice Modulator
2.1.5. Inverse Fourier Transform

2.2. Video
2.3. Input

3. Testing and Debugging
4. Results and Conclusions
5. References

List of Figures

 Figure 1: High-level overview of system components 2
 Figure 2: AC’97 controller 4
 Figure 3: HPS Algorithm 5
 Figure 4: Video component 7
 Figure 5: Timing diagram of buffer swaps 9
 Figure 6: Timing diagrams for VGA control signals 10
 Figure 7: Device-to-host communication for PS/2 11

1. Introduction [Adam and Lunduo]

The voice modulator changes the pitch of voice inputs. Users speak or sing into a

microphone while playing keys on a keyboard. Real-time visualizations of the waveforms are

displayed on a VGA screen. The modulator outputs frequency-shifted copies of the voice data to

match the notes selected from the keyboard while preserving vocal formants as much as possible.

This device allows users of any musical ability to sing notes or chords perfectly.

The modulator is implemented on a field programmable gate array (FPGA). Inputs are

taken via a microphone and a PS/2 keyboard. A VGA monitor is used to display waveforms.

MIDI keyboard support was originally planned; however, we could not get it to work in time.

 1

Visualizations for the real-time Fourier transforms of the voice input were also not debugged in

time.

The system has two main components, audio and video. Figure 1 shows a high-level

overview of the inputs, outputs, and interactions between parts.

PS/2 Controller & Decoder

AC’97

Controller
 Audio Modules

Figure 1: High-level overview of system components.

The audio component of the system consists of an AC’97 audio controller, a fast Fourier

transform (FFT) module, a pitch detection module, a frequency modulator, and an inverse fast

Fourier transform (IFFT) module. Audio data is continuously sent through the FFT module to

compute its frequency spectrum. The Harmonic Product Spectrum (HPS) algorithm is used to

determine the input pitch. The modulator shifts frequencies to match those specified from the

keyboard, and sends the output to the IFFT module. The resulting waves are buffered, and sent

back to the AC’97 at a sample rate of 48KHz. All computations are done on 1024-sample

windows.

The visual components include a VGA controller, a wave display module, and a (non-

functional) FFT display module. By default, the wave display updates continuously as it

receives data. The user can freeze the current screen or cause the display to trigger on a rising

Video Modules

VGA

Controller

 2

edge of the waveform. The screen displays both input and output waves. Ideally, the real-time

FFT outputs would also be displayed. The VGA runs at a 1024x768 resolution with a 60Hz

refresh rate.

All modules are written in Verilog with Xilinx ISE 8. Unit testing was done with

ModelSim, although most modules required incremental testing on the FPGA with a Tektronix

TLA5202 Logic Analyzer.

2. Module Descriptions and Implementations

The voice modulator was developed in three parts: audio, visual, and keyboard input.

2.1. Audio [Adam]

The audio component is the major component of the project. Its job is to:

1. Sample the microphone data
2. Compute the Fourier transform of each audio frame
3. Analyze the frequency spectrum to determine the fundamental pitch of the input
4. Modulate the spectrum to change the fundamental pitch
5. Synthesize the spectrum back into a new audio frame with the inverse Fourier transform
6. Send the audio data to the headphones

2.1.1. AC’97 Controller

 The AC’97 controller (Figure 2) provides a simple audio interface for the rest of the

project. On system reset, it initializes the AC’97 by setting the various command registers to

appropriate values (e.g. unmuting the headphone and microphone ports). It translates between

the AC’97’s bit-serial protocol and a simpler 18-bit parallel protocol, and it also synchronizes

from the AC’97’s 12.288MHz bit clock and the FPGA’s 27MHz clock. It provides a 48KHz

sync pulse called frame_enable every time a new frame of audio data is ready to be sent to the

headphones or received from the microphone.

 3

To lab kit To AC97

2.1.2. Fourier Transform

 The Fourier transform module computes a 1024-point short-time fast Fourier transform

of the audio input with a rectangular windowing function. It stores audio samples in block RAM

until it acquires 1024 samples, at which point it begins the computation. The FFT is

implemented by the Xilinx IP CoreGen FFT, which uses the Cooley-Tukey algorithm.

 The entire system works with monaural data, so the stereo inputs are converted to mono

by averaging the two channels before they are fed into the FFT. Likewise, the final output signal

is copied onto both output channels.

 When the FFT has finished computing, it stores the resulting transform in another block

RAM and pulses a start signal to the analyzer module, which then reads from that RAM as

necessary.

2.1.3. Spectrum Analyzer

 The spectrum analyzer module computes the fundamental frequency of the current

window of audio data. It does so using the Harmonic Product Spectrum (HPS) algorithm

audio_in_right
AC97

Controller

audio_reset_b

ac97_bit_clock

ac97_sdata_in

ac97_sdata_out

ac97_synch

clock_27mhz

frame_enable

reset

audio_in_left

18

18
audio_out_left

18

audio_out_right

18

Figure 2: AC’97 Controller

 4

(Figure X). The basic idea behind HPS is that voice data will almost always have strong

harmonics above the fundamental at twice, three times, etc. the frequency.

Figure 3: HPS Algorithm [1]
To exploit this, consider the spectra you would get from down sampling the input – they

would be contracted by a factor equal to that of the down sampling. Now multiply these spectra

together for several down sampling factors. If the original data had strong harmonics, they will

line up in the down sampled spectra, creating a strong peak at the fundamental frequency. We

chose to down sample by 2x and by 3x, so according to the HPS algorithm, the formula for the

fundamental frequency is:

kkk
k

lfundamenta XXXf 32maxarg=

Where is the kth component of the Fourier transform, and kX is the standard complex

norm. However, because of the discretized nature of the problem, this formula is flawed, in that

it skips over many values of the transform. To rectify this, we modified the formula not to skip

any indices as k ranges over the indices. Also, since the argmax of)(kf is equivalent to the

argmax of 2)(kf , the analyzer avoids square roots and computes squared norms instead. Thus,

the formula we use is

 5

()() 2
23133122maxarg +++ +++= kkkkkk

k
lfundamenta XXXXXXf

 The spectrum analyzer computes this function as it iterates over the indices k for

⎣ ⎦ 1701 6
1024 =≤≤ k to avoid aliasing, keeping track of the largest value seen so far. After it

finishes, it passes the fundamental frequency onto the voice modulator module, and it pulses a

start signal indicating that modulation is to begin.

2.1.4. Voice Modulator

 The voice modulator module takes the Fourier transform of the audio, the computed

fundamental frequency, and the desired output frequency, and it produces a new Fourier

transform with a shifted fundamental frequency. It does this by scaling the transform according

to the ratio of the input and output frequencies. For example, if the desired output is twice as

high as the input, the transform gets stretched out by a factor of two.

 The desired output frequency can actually be a whole set of frequencies, e.g. a chord.

The keyboard interface provides a 48-bit vector corresponding to which of the 48 musical notes

are currently being pressed. For each key, the voice modulator performs the modulation and

adds all of the results together.

 The first step in the modulation process is that the output transform is initialized to all

zeroes. Then, for each output frequency, the ratio r of the output to input frequencies is

computed by a fixed-point division. Next, each index k of the input FFT is mapped to the index

rk of the output. To avoid losing information and energy, the new value of out_fft[rk] gets set to

out_fft[rk] + in_fft[k]. The new FFT is stored in another block RAM. When the modulation has

finished, the voice modulator module pulses a start signal to the inverse Fourier transform

module, indicating that the audio synthesis is ready to begin.

2.1.5 Inverse Fourier Transform

 The inverse Fourier transform module synthesizes a window of audio data from the

transform produced by the voice modulator. It uses the same CoreGen module as the forward

transform. After the transform has finished computing, it stores the audio data in a block RAM.

 6

The audio data is then passed back to the AC’97 controller as needed according to the

frame_enable signal, which is pulsed at 48KHz

 Ideally, the inverse transform will finish computing each window just as the last sample

from the previous window is being fed to the AC’97 controller. Although this does not occur in

practice, it does not produce any noticeable effect of having a small number of frames from one

audio window appear in the next or previous window due to timing differences between

windows.

2.2. Video [Lunduo]

Figure 4 shows the modules involved in the video component. The audio_xxx and fft_xxx

signals are from the AC’97 controller and inverse FFT modules respectively. The mod_xxx and

fft_xxx come are from the modulator and FFT modules respectively.

Figure 4: Video Component

VGA Controller
VGA control signals

DCM

Wave Display FFT Display

pixel_count[9:0]
pixel_clock (global)

mod_ready line_count[9:0]
audio_ready

switch [0]

VGA RGB signals

 audio_wave[17:0]

 fft_wave[17:0]

 rgb[23:0] rgb[23:0] fft_ready

 mod_fft[17:0]

 fft_fft[17:0]

fft_ready

 7

2.2.1. Wave Display

The wave display module takes a ready signal, a wave input, and current pixel

coordinates as inputs. The module samples the wave only when ready is high. It keeps three

buffers: a display buffer for the current VGA frame, a wave buffer to hold new audio data, and an

other buffer containing enough audio data for the next VGA frame. Buffers are numbered 0, 1,

and 2. Any buffer number can be derived by exclusive-nor’ing the other two. Each buffer slice

stores the minimum and maximum y-coordinates for a given x-coordinate.

The module keeps a pointer to the current rendering frame called the wave pointer.

Because the pixel moves horizontally across lines, the wave pointer traverses the entire display

buffer once per line. At the end of each line, the pointer is reset to 0. The module outputs color

if the y-coordinate is between the minimum and maximum values for the given x-coordinate, or

black otherwise. The wave buffer keeps its own pointer. The module continually writes to the

active wave frame. When the ready signal is high, the wave pointer is incremented and the audio

data is latched.

When the wave buffer is complete, it swaps pointers with the other buffer. When the

pixel reaches the end of the VGA frame, the display buffer swaps pointers with the most recently

completed buffer. Rendering a VGA frame takes much longer than filling a buffer, so the two

non-Display buffers are overwritten several times before another frame can be displayed. VGA

frames are necessarily discontinuous snapshots in time; however, the human brain simply

interprets the discontinuity as moving forms.

In addition to data inputs, the user controls the hold and trigger signals to the module.

When hold is high, the display buffer remains constant. The user sees the same data until he

releases hold. The timing is illustrated in Figure 5. When trigger is enabled, the wave data must

trigger before starting to write a new wave buffer. Triggering occurs when a positive sample

value follows a zero value. Once triggered, all subsequent wave data is written until the wave

buffer is complete.

 8

Figure 5: Timing Diagram of Buffer Swaps

There were several challenges in implementing the wave display module. The VGA

display runs on a 31.5-MHz pixel clock, but audio data is updated on an internal 27-MHz clock.

It would be dangerous to update buffers on different clocks, as the display and wave pointers

might be assigned to the same buffer. Therefore, all buffers are updated only on the 27-MHz

clock. The display buffer is updated only once during the vertical blanking period and never

conflicts with the wave buffer.

Trigger mode causes a problem when the data does not cross the zero-line. “Zero-line”

refers to any value whose 7 most significant value bits are zero. When data never triggers, the

display and other buffer alternate while the wave buffer remains constant. As a result, the screen

flickers between the most recent triggered data and an older snapshot. To fix this issue, a flag

can be set once a buffer is overwritten. For example, if display is buffer 0, flags should be

3’b110 when display is ready to switch buffers. If wave is stuck on buffer 1, display will first

switch to buffer 2. When it is done rendering, flags will be 3’b010. Display will then remain at

buffer 2 because buffer 0 contains old data.

It is possible and simpler to display waveforms with only two buffers, one for rendering

and the other for loading data. However, triggering the data would be difficult. If the sampling

rate, pixel clock speed, and how often data triggers were known, one could design the module to

update the wave buffer a known number of times during VGA blanking. However, this design

would require a constant sampling rate and knowledge of the nature of wave inputs.

0 2 1

1 2 1 0 1 0 2 0 2 0 2

2 1 2 1 0 1 0 2 0 2 0 2

0

Display

Wave 1

Other 0

VGA Frame

 Hold

 9

2.2.2. FFT Display

The FFT display module is similar to the wave display module, except that it always

triggers when the FFT index is zero. Inputs to the FFT display include the FFT index, the real

and imaginary values, and a ready signal. A buffer slice stores the absolute value of the FFT

vector for a given index. Unfortunately, we were unable to fully debug the module. The final

system does not contain FFT visualizations.

2.2.3. VGA Controller

The VGA controller takes only the reset and clock signals as inputs. It outputs sync and

blank signals to the VGA, as well as current pixel and line counts. The module uses an internal

pixel counter, incremented at each clock edge. The pixel counter is reset when it reaches the

pixel limit for each line. The line count is incremented once a line. It also rolls over once per

frame. The VGA control signals are generated with combinatorial logic according to Figure 6.

All signals are active low. Sync signals pulse low during the horizontal and vertical sync

periods. Blank signals are high during active video periods and low otherwise. This

implementation ties the composite sync signal to 1, as it is not used in most modern VGA

displays.

blank

sync

Front porch Sync pulse Back porch

Figure 6: Timing Diagrams for VGA Control Signals

Two wave display modules for the input and output waves run simultaneously. Both

modules feed RGB outputs into a multiplexer that selects the VGA signals, depending on the

current area being displayed. With the current implementation, it would also be possible to

 10

simply output the bitwise OR of all display outputs. Display modules simply output black

(RGB 0) when the pixel is outside of the module’s area parameters.

2.3. Keyboard [Lunduo]

A PS/2 keyboard is used to input selected pitches. The lower two rows [Z-comma] and

[S-J] represent the white and black piano keys respectively for one octave. The upper two rows

[Q-I] and [2-7] represent the set one octave higher. [F1-F3] change the base octave (0 – 2), thus

allowing the user to input 49 different pitches.

PS/2 allows for both device-to-host and host-to-device communication. This project only

uses device-to-host communication. The keyboard provides the clock signal at 10 – 16.7 kHz.

PS/2 device-to-host is a serial protocol consisting of 11-bit frames (Figure 7). Each frame

contains a start bit, a data byte in little endian, and parity and stop bits. Data is written on the

rising edge of the clock, and sampled on the falling edge.

Figure 7: Device-to-Host Communication for PS/2 [2]

When a key is pressed, the keyboard generates a “make code” containing the

corresponding scan code. Scan codes are generally one byte long, although some keys have

extended codes prefixed with 0xE0. When a key is released, the keyboard generates a “break

code” consisting of 0xF0 and the scan code for the key. The data line is held high until the

keyboard has data to send.

The PS/2 controller module is a simple FSM that reads data from the keyboard and

outputs a key number, state (on/off), and octave. For simplicity, the module only handles one-

 11

byte scan codes. The user is limited to using the aforementioned keys. The PS/2 decoder

module then converts the key number and octave into a single key index (0 – 48).

For unknown reasons, pressing too many keys simultaneously or pressing the same key

too quickly sometimes causes codes to be dropped. The space bar is the “clear all” key, which

resets all key states to off.

3. Testing and Debugging [Adam and Lunduo]

 Testing and debugging a large, complex system like this one is a daunting task. Nothing

ever works the first time, and the process is slowed even further by very long compilation times

that only get longer as the project grows.

 ModelSim was an invaluable resource for testing and debugging. We wrote test benches

for every major component of the system to test them in controlled, isolated environments, and

then we ran these in ModelSim to verify the correct outputs. As we wrote and tested components,

we started connecting them to each other and ensuring they could work together. Finally, we

wrote a test bench which simulated the entire lab kit to make sure the entire pipeline of modules

worked together.

 One of the biggest challenges in testing was simulating the audio data. At 48KHz, one

would have to simulate for roughly 20ms to get one 1024-sample window of audio data. Typical

simulation lengths are on the order of several hundred microseconds. To get around this, we put

a switch in the system that would generate false audio data in the form of a sawtooth wave at a

much higher frequency, but it still had to be slow enough to allow all of the computations to be

performed during one window.

 Code that works in simulation will often not work on hardware for a variety of reasons.

These situations were the hardest to debug. The logic analyzers were a very valuable resource

for this, but they are limited to 32 bit lines, when frequently several hundred data bits need to be

watched at once to get a full picture of all of the system’s internal state. To get around this, we

had a switch cycle through states where different signals were muxed into the analyzer probes.

This still has its limitations, however, and every recompile took over 30 minutes with all of the

modules in place.

 12

 Most video data required full recompiles to test, as timing issues were not present in

simulations. Once video and FFT modules were present in the same top-level labkit module,

Xilinx would generate hold errors for the internal 27-MHz clock. Although we were unable to

find the cause of this problem, we managed to solve it by buffering all internal clock signals.

4. Results and Conclusions [Adam and Lunduo]

 Time proved to be the ultimate enemy in this project. The very long compile times made

testing and debugging excruciatingly painful, and although almost every module seemed to work

perfectly four times out of five, we had a difficult time getting everything to work together.

 Pitch detection proved to be the most difficult part. The output of the HPS algorithm was

not as accurate was we had hoped. As a result, the output frequency was all over the place and

did not resemble voice at all. The best results we got were when we ignored the output of the

pitch detection and hard-wired the detected frequency to a fixed value. The voice could then be

modulated up or down by a fixed ratio, and it sounded really cool and was even intelligible.

One reason for this is probably the low frequency resolution – at a sampling rate of

48Khz and a window size of 1024, the frequency resolution is about 48Hz. Two ways to

increase the resolution are to decrease the sample rate by down sampling or to increase the

window size. In a test where we down sampled, the pitch detection was significantly better, but

the modulation would no longer work. In a test where we increased the window size, the pitch

detection accuracy did not improve.

 Future work would obviously be to improve the pitch detection algorithm. One idea we

had but did not have a chance to implement and test was to have two separate forward Fourier

transforms – one on the regular audio data and one on down sampled data. The transform of the

down sampled data would be used to compute the detected frequency according to HPS, and that

value would be fed to the voice modulator, but that would work with the original transform data,

not the down sampled data.

 Other future work would be to finish and integrate all of the modules which we could not

successfully debug in time to work with the rest of the system, specifically the MIDI controller

and the FFT VGA display. A MIDI keyboard provides a much better musical input mechanism

 13

and is also more reliable when a large number of keys are pressed. Being able to visualize the

FFT would also help immensely in debugging.

 All in all, our Voice Modulator system can provide cool effects by changing someone’s

voice up or down in pitch while preserving vocal formants and intelligible speech, but it could

have been even cooler if the pitch detection worked better.

5. References

[1] Garreth Middleton. “Pitch Detection Algorithms”. <http://cnx.org/content/m11714/latest/>

[2] Adam Chapweske. “The PS/2 Mouse/Keyboard Protocol.

<http://www.computer-engineering.org/ps2protocol/>

Nathan Ickes. “Audio Input and Output”.

< http://www-mtl.mit.edu/Courses/6.111/labkit/audio.shtml>

 14

http://cnx.org/content/m11714/latest/
http://www.computer-engineering.org/ps2protocol/
http://www-mtl.mit.edu/Courses/6.111/labkit/audio.shtml

