

Lecture 13 6.111 Flat Panel Display Devices

Outline

- Overview Flat Panel Display Devices
 - How do Displays Work?
 - Emissive Displays
 - Light Valve Displays
- Display Drivers
 - Addressing Schemes
 - Display Timing Generator
 - Gray Scale / Color Schemes

Applications of Flat-Panel Displays

SMALL FORMAT

Medical Defibrillator

LARGE FORMAT

Courtesy Apple

Personal Digital Assistant

Car Navigation & Entertainment

Courtesy of PixTech

Courtesy Amazon

Electronic Book Flat Panel Display Devices

Large Screen Television (color)

Term	Definition	
Pixel	Picture element—The smallest unit that can be addressed to give color and intensity	
Pixel Matrix	Number of Rows by the Number of Columns of pixels that make up the deisplay	
Aspect Ratio	Ratio of display width to display height; for example 4:3, 16:9	
Resolution (ppi)	Number of pixels per unit length (ppi=pixels per inch)	
Frame Rate (Hz)	Number of Frames displayed per second	
Viewing Angle (°)	Angular range over which images from the display could be viewed without distortion	
Diagonal Size	Length of display diagonal	
Contrast Ratio	Ratio of the highest luminance (brightest) to the lowest luminance (darkest)	

Information Capacity of Displays (Pixel Count)

Resolution	Pixel	Ratio
Video Graphic Array (VGA)	640 x 480 x RGB	4:3
Super Vedio Graphic Array (SVGA)	800 x 600 x RGB	4:3
eXtended Graphic Array (XGA)	1,024 x 768 x RGB	4:3
Super eXtended Graphic Array (SXGA)	1,280 x 1,024 RGB	5:4
Super eXtended Graphic Array plus (SXGA+)	1,400 x 1,080 x RGB	4:3
Ultra eXtended Graphic Array (UXGA)	1,600 x 1,200 x RGB	4:3
Quad eXtended Graphics Array (QXGA)	2048 x 1536 x RGB	4:3
Quad Super eXtended Graphics Array (QSXGA)	2560 x 2048 x RGB	4:3

Display Devices, No. 21, Spring 2000, p. 41 Flat Panel Display Devices

How Do Displays Work?

- "Time Sequential Electrical Signals" converted into images.
 - Signals routed to the display elements (similar to memory addressing)
 - Pixels convert the electrical signal into light of color and intensity (inverse of image capture)

L13: 6.111 Spring 2009

Flat Panel Display Devices

14117

Human Eye— Spectral Response

l'III i i

- Displays could be classified into two broad categories
 - □ Light Generation (Emissive Displays)
 - Light Modulation (Light Valve Displays)
- Emissive Displays generate photons from electrical excitation of the picture element (pixels)
 - Cathode Ray Tubes (CRTs), Organic Light Emitting Displays (OLEDs), Plasma Displays (PDs)
- Light Valve Displays spatially and temporally modulate the intensity pattern of the picture elements (pixels)
 - Liquid Crystal Displays (LCDs), Digital Light Processors (DLPs), Electrophoretic Displays (EPDs)

L13: 6.111 Spring 2009

Flat Panel Display Devices

CRT Display

Electrons beam "boiled off a metal" by heat (thermionic emission) is sequentially scanned across a phosphor screen by magnetic deflection. The electrons are accelerated to the screen acquiring energy and generate light on reaching the screen (cathodoluminescence)

Plasma Displays

- Electrons are accelerated by voltage and collide with gasses resulting in ionization and energy transfer
- Excited ions or radicals relax to give UV photons
- UV photons cause hole-electron generation in phosphor and visible light emission (photoluminescence)

L13: 6.111 Spring 2009

Flat Panel Display Devices

Figure 1. A typical OLED multilayer device structure

Rajeswaran et al., SID 00 Digest, p. 974

17-inch Active Matrix OLED

H.-K. Chung et al., SID 05 Digest, p. 956

electroluminescence

L13: 6.111 Spring 2009

Digital Mirror Device

Courtesy of Texas Instruments

Applied voltage deflects Mirror and hence direct light

Reflective Light Valves

Liquid Crystal Displays

Liquid Crystals rotate the plane of polarization of light when a voltage is applied across the cell

Flat Panel Display Devices

1417

TFT AMLCD

Flat Panei אפועפוע שפענפט

Sequential Addressing (pixel at a time) CRT, Laser Projection Display

Matrix Addressing (line at a time) Row scanning, PM LCD, AMLCD, FED, PDPs, OLEDs

- Direct Addressing 7-segment LCD
- Random Addressing
 Stroke-mode CRT

14117

Sequential Addressing (Raster Scan)

- Time is multiplexed
 - □ Signal exists in a time cell
- A pixel is displayed at a time
 Single data line
- Rigid time sequence and relative spatial location of signal
 - Raster scan
- Data rate scales with number of pixels
- Duty cycle scales with number of pixels
- Horizontal sync coordinates lines
- Vertical sync coordinates frames
- Blanking signals (vertical & horizontal) so that retraces are invisible

Tannas, SID 00 Applications Seminar

Composite Frames

- The 'frame' is a single picture (snapshot).
 - □ It is made up of many lines.
 - □ Each frame has a synchronizing pulse (vertical sync).
 - □ Each line has a synchronizing pulse (horizontal sync).
 - □ Brightness is represented by a positive voltage.
 - Horizontal and Vertical intervals both have blanking so that retraces are not seen (invisible).

Slide by Professor Don Troxel L13: 6.111 Spring 2009

Display Timing Generator Parameters

L13: 6.111 Spring 2009

Flat Panel Display Devices

Multiplex Driving

Kim, SID 2001

Matrix Addressing

Time multiplexed

- Row at a time scanning
 - A column displayed during the time assigned to a row
- For a N rows by M columns display
 - □ M + N electrodes are required
- Row scanning rate scales with number of rows
- Data rate scales with number of pixels
- Duty cycle scales with number of rows

Active Matrix Addressing

•Introduce non linear device that improves the selection.

•Storage of data values on capacitor so that pixel duty cycle is 100%

•Improve brightness of display by a factor of N (# of rows) over passive matrix drive

•Display element could be LC, EL, OLED, FED etc

Flat Panel Display Devices

Yeh & Gu

Grey Shades Generation Techniques

Spatial Modulation

Frame Modulation

Amplitude Modulation

Individually selectable Areas per pixel area per dwell time

Reduced intensity by skipping frames per pixel area Analog intensity at full dwell time per pixel

(Spatial Modulation / Frame Rate Control)

Kim, SID 2001

Driver Circuits

Shift Registers

N stage shift registers
 Static vs Dynamic

Level shifters

Match outside signal to signal on display

Output buffers

Typically bi-level

Shift Registers

N stage shift registers
 Static vs Dynamic

Level shifters

Match outside signal to signal on display

Output buffers

Typically bi-level

Analog Data Driver

28

Overview Flat Panel Display Devices

How do Displays Work?
 Emissive Displays (CRTs, FEDs, OLEDs, PDs)
 Light Valve Displays (AMLCDs, DMDs, EPDs)

Display Drivers

Addressing Schemes (Sequential, Direct, Matrix, Random)

- Display Timing Generator
- Gray Scale (Spatial, Frame, Amplitude)
- Color Schemes (Spatial, Sequential, Coincident)

Emissive Displays

- Displays that generate photons when an electrical signal is applied between the terminals
- Energy causes excitation followed by relaxation
 - □ Hole + Electron recombination
 - **Exciton formation and annihilation**
 - Relaxation of excited radicals in a plasma
- The different types of Luminescence differ mostly in the way the holes and electrons are generated
 - holes and electrons are generated by UV in a phosphor which then recombine and generate red, green or blue light —Photoluminescence or Phosphorescence
 - holes and electrons injected by pn junction or generated by impact ionization or excitation which then recombine and generate red, green or blue light —Electroluminescence
 - holes and electrons generated by electron beam which then recombine and generate red, green or blue light — Cathodoluminescence
- Examples of Emissive Flat Panel Displays
 - Electroluminescence (Light Emitting Diode, Organic-Light Emitting Devices & In-organic ELectroluminescent Displays)
 - Cathodoluminescence (Cathode Ray Tube, Vacuum Florescent Display, Field Emission Display)
 - Photoluminescence (PLasma Displays)

- Displays that "spatially and temporally" modulate ambient lighting or broad source of light and redirect to the eye.
- Display element spatially changes the intensity of plane wave of light using
 - Refraction
 - Reflection
 - Polarization change
- These displays are part of a broader class of devices called Spatial Light Modulators which in general operate though local
 - Amplitude change
 - Polarization change
 - □ Phase change
 - □ Intensity change
- Examples of Light Valve Displays
 - □ Liquid Crystal Displays (active & passive matrix)
 - Deformable Mirror Displays
 - □ Membrane Mirror Displays
 - Electrophoretic Displays (E-Ink)