L15: VLSI Integration and Performance Transformations

- Moore's Law and Integration
- IC Design
$>$ ASIC Design
$>$ Clocks
$>$ Test
- Performance Transformations
- Trends

Acknowledgements:

- Lecture prepared by Professor Anantha Chandrakasan
- Lecture material adapted from J. Rabaey, A. Chandrakasan, B. Nikolic, "Digital Integrated Circuits: A Design Perspective" Copyright 2003 Prentice Hall/Pearson.
- Curt Schurgers

Cost of Transistor

In 1965, Gordon Moore was preparing a speech and made a memorable observation. When he started to graph data about the growth in memory chip performance, he realized there was a striking trend. Each new chip contained roughly twice as much capacity as its predecessor, and each chip was released within 18-24 months of the previous chip. If this trend continued, he reasoned, computing power would rise exponentially over relatively brief periods of time.

Evolution of Transistor Integration

Moore's Law: transistor density doubles every 1.5-2 years

Layout 101

- Follow simple design rules (contract between process and circuit designers)

Custom Design/Layout

From register files / Cache / Bypass

Die photograph of the Itanium integer datapath

Bit-slice Design Methodology

- Hand crafting the layout to achieve maximum clock rates (> 1Ghz)
- Exploits regularity in datapath structure to optimize interconnects

Most Common Design Approach for Designs up to 500Mhz Clock Rates

Standard Cell Example

Power Supply Line (V_{DD}) Delay in (ns)!!

Path	$\mathbf{1 . 2 V}-\mathbf{1 2 5}^{\circ} \mathbf{C}$	$\mathbf{1 . 6 V}-\mathbf{4 0}{ }^{\circ} \mathbf{C}$
$\operatorname{In} 1-t_{p L H}$	$0.073+7.98 C+0.317 T$	$0.020+2.73 C+0.253 T$
$\operatorname{In} \mathbf{1}-t_{p H L}$	$0.069+8.43 C+0.364 T$	$0.018+2.14 C+0.292 T$
In $2-t_{p L H}$	$0.101+7.97 C+0.318 T$	$0.026+2.38 C+0.255 T$
In $2-t_{p H L}$	$0.097+8.42 C+0.325 T$	$0.023+2.14 C+0.269 T$
In3- $t_{p L H}$	$0.120+8.00 C+0.318 T$	$0.031+2.37 C+0.258 T$
In $3-t_{p H L}$	$0.110+8.41 C+0.280 T$	$0.027+2.15 C+0.223 T$

3-input NAND cell
(from ST Microelectronics):
C = Load capacitance
T = input rise/fall time

Ground Supply Line (GND)

- Each library cell (FF, NAND, NOR, INV, etc.) and the variations on size (strength of the gate) is fully characterized across temperature, loading, etc.

Standard Cell Layout Methodology

2-level metal technology

Current Day Technology

Cell-structure hidden under interconnect layers

- With limited interconnect layers, dedicated routing channels between rows of standard cells are needed
- Width of the cell allowed to vary to accommodate complexity
- Interconnect plays a significant role in speed of a digital circuit

Verilog to ASIC Layout (the push button approach)

module adder64 (a, b, sum); input [63:0] a, b; output [63:0] sum; assign sum = $\mathbf{a}+\mathbf{b}$; endmodule

After Routing

1
After
Placement
256×32 (or 8192 bit) SRAM Generated by hard-macro module generator

- Generate highly regular structures (entire memories, multipliers, etc.) with a few lines of code
- Verilog models for memories automatically generated based on size

Clock Distribution

Clock skew, courtesy Alpha

For 1Ghz clock, skew budget is 100ps. Variations along different paths arise from:

- Device: $\mathrm{V}_{\mathrm{T}}, \mathrm{W} / \mathrm{L}$, etc.
- Environment: $\mathrm{V}_{\mathrm{DD}},{ }^{\circ} \mathrm{C}$
- Interconnect: dielectric thickness variation

- VCO $\quad \Rightarrow$ produces high frequency square wave
- Divider $\quad \Rightarrow$ divides down VCO frequency
- PFD $\quad \Rightarrow$ compares phase of ref and div

■ Loop filter \Rightarrow extracts phase error information
Used widely in digital systems for clock synthesis (a standard IP block in most ASIC flows)

Courtesy M. Perrott

Scan Testing

Idea: have a mode in which all registers are chained into one giant shift register which can be loaded/ read-out bit serially. Test remaining (combinational) logic by
(1) in "test" mode, shift in new values for all register bits thus setting up the inputs to the combinational logic
(2) clock the circuit once in "normal" mode, latching the outputs of the combinational logic back into the registers
(3) in "test" mode, shift out the values of all register bits and compare against expected results.

- There are a large number of implementations of the same functionality
- These implementations present a different point in the area-time-power design space
- Behavioral transformations allow exploring the design space a high-level

Optimization metrics:

1. Area of the design
2. Throughput or sample time \mathbf{T}_{S}
3. Latency: clock cycles between the input and associated output change
4. Power consumption
5. Energy of executing a task

6. ...

Fixed-Coefficient Multiplication

Conventional Multiplication

$$
\mathbf{Z}=\mathbf{X} \cdot \mathbf{Y}
$$

X_{3}	X_{2}	X_{1}	X_{0}
Y_{3}	Y_{2}	Y_{1}	Y_{0}
$\mathrm{X}_{3} \cdot \mathrm{Y}_{0}$	$\mathrm{X}_{2} \cdot \mathrm{Y}_{0}$	$\mathrm{X}_{1} \cdot \mathrm{Y}_{0}$	$\mathrm{X}_{0} \cdot \mathrm{Y}_{0}$

$$
\begin{array}{llll}
\mathrm{X}_{3} \cdot \mathrm{Y}_{1} & \mathbf{X}_{2} \cdot \mathbf{Y}_{1} & \mathbf{X}_{1} \cdot \mathbf{Y}_{1} & \mathbf{X}_{0} \cdot \mathbf{Y}_{1}
\end{array}
$$

$$
\begin{array}{llll}
\mathbf{X}_{3} \cdot \mathbf{Y}_{2} & \mathbf{X}_{2} \cdot \mathbf{Y}_{2} & \mathbf{X}_{1} \cdot \mathbf{Y}_{2} & \mathbf{X}_{0} \cdot \mathbf{Y}_{2}
\end{array}
$$

$\mathrm{X}_{3} \cdot \mathbf{Y}_{3}$							$\mathrm{X}_{2} \cdot \mathbf{Y}_{3}$
$\mathrm{X}_{1} \cdot \mathbf{Y}_{3}$	$\mathrm{X}_{0} \cdot \mathbf{Y}_{3}$						
Z_{7}	Z_{6}	Z_{5}	Z_{4}	Z_{3}	Z_{2}	Z_{1}	Z_{0}

Constant multiplication (become hardwired shifts and adds)

$$
\begin{aligned}
& \mathrm{Z}=\mathrm{X} \cdot(\mathbf{1 0 0 1})_{2} \\
& \begin{array}{cccc}
\mathrm{X}_{3} & \mathrm{X}_{2} & \mathrm{X}_{1} & \mathrm{X}_{0} \\
1 & 0 & 0 & 1 \\
\hline \mathrm{X}_{3} & \mathrm{X}_{2} & \mathrm{X}_{1} & \mathrm{X}_{0}
\end{array} \\
& Y=(1001)_{2}=2^{3}+2^{0}
\end{aligned}
$$

IIIITi

Canonical signed digit representation is used to increase the number of zeros. It uses digits $\{-1,0,1\}$ instead of only $\{0,1\}$.

Iterative encoding: replace string of consecutive 1 's

$$
\begin{array}{|llllll|}
\hline \mathbf{0} & 1 & 1 & \ldots & 1 & 1 \\
\hline
\end{array} \quad \Rightarrow \begin{array}{|cccccc|}
\hline 1 & 0 & 0 & \ldots & \mathbf{0} & -1 \\
\hline
\end{array}
$$

Worst case CSD has 50\% non zero bits

01101111

$$
\begin{array}{|llllllll|}
\hline 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\
\hline
\end{array}
$$

\Rightarrow

0	1	1	1	0	0	0	-1
			$\mathbf{1}$				
1	0	0	-1	0	0	0	-1

Algebraic Transformations

IIHI

distributivity

Time multiplexing: mapped to 3 multipliers and 3 adders

Reduce number of operators to 2 multipliers and 2 adders

IIIII
 A Very Useful Transform: Retiming

Retiming is the action of moving delay around in the systems

- Delays have to be moved from ALL inputs to ALL outputs or vice versa

Cutset retiming: A cutset intersects the edges, such that this would result in two disjoint partitions of these edges being cut. To retime, delays are moved from the ingoing to the outgoing edges or vice versa.

Benefits of retiming:

- Modify critical path delay
- Reduce total number of registers

Note: here we use a first cut analysis that assumes the delay of a chain of operators is the sum of their individual delays. This is not accurate.

Pipelining, Just Another Transformation (Pipelining = Adding Delays + Retiming)

Contrary to retiming, pipelining adds extra registers to the system

How to pipeline:

1. Add extra registers at all inputs
2. Retime

Illif The Power of Transforms: Lookahead

$$
y(n)=x(n)+A[x(n-1)+A y(n-2)]
$$

Iוilin Key Concern in Modern VLSI: Variations!

Deterministic design techniques inadequate in the future

Trends: "Chip in a Day" (Matlab/Simulink to Silicon...)

Map algorithms directly to silicon - bypass writing Verilog!

Courtesy of R. Brodersen

$\|\| i i$

Fingerprinting is a technique to deter people from illegally redistributing legally obtained IP by enabling the author of the IP to uniquely identify the original buyer of the resold copy.
The essence of the watermarking approach is to encode the author's signature. The selection, encoding, and embedding of the signature must result in minimal performance and storage overhead.

same functionality, same area, same performance watermark of 4768 bits embedded (courtesy of G. Qu, M. Potkonjak)

Evolution of Transistor Integration

Moore's Law: transistor density doubles every 1.5-2 years

Processor Performance Trends

Processor performance follows Moore's Law

- doubles every 2 years

Power per gate goes down but total power ...

Interconnect Metallization

- Six layers of Cu metallization
\square Lower layers are finer and are used for "local" interconnection between cells
\square Middle layers are wider and are used for global interconnection between blocks
\square Upper layers are wider and are used for clocks, ground and power distribution
\square Oxide is the Inter Metal Dielectric (etched)

Interconnect Metallization

