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L2: Combinational Logic Design  

(Construction and Boolean Algebra)
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Review: Noise Margin 
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TTL Logic Style (1970’s-early 80’s)
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MOS Technology: The NMOS Switch
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NMOS Device Characteristics 
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analysis.
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PMOS: The Complementary Switch

S

G

D

gate

P+
N-substrate

P+

drainsource

RPMOS
Switch
Model

VT = -0.5V

VGS > VT

OFF RPMOS

VGS < VT

ON

PMOS ON when Switch Input is Low

VDD



L2: 6.111 Spring 2009 7Introductory Digital Systems Laboratory

The CMOS Inverter
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Inverter VTC: Load Line Analysis
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Possible Function of Two Inputs

X

Y
F

X Y 16 possible functions (F0–F15)

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

X Y

X NOR Y
NOT (X OR Y)

X NAND Y
NOT (X AND Y)

10 NOT X
X AND Y

X OR Y

NOT Y
X XOR Y X = Y

There are 16 possible functions of 2 input variables:

In general, there are 2 (2^n) functions of n inputs
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Common Logic Gates

X
Y Z

Z
X
Y

X Y Z

0 0 1
0 1 1
1 0 1
1 1 0

NAND

Gate Symbol Truth-Table Expression

X Y Z

0 0 1
0 1 0
1 0 0
1 1 0

NOR

Z = X • Y

Z = X + Y

Z
X
Y

X Y Z

0 0 0
0 1 1
1 0 1
1 1 1

OR Z = X + Y

X
Y Z

X Y Z

0 0 0
0 1 0
1 0 0
1 1 1

AND
Z = X • Y



L2: 6.111 Spring 2009 11Introductory Digital Systems Laboratory

Exclusive (N)OR Gate

X
Y Z

Z
X
Y

X Y Z

0 0 0
0 1 1
1 0 1
1 1 0

X Y Z

0 0 1
0 1 0
1 0 0
1 1 1

XOR
(X ⊕ Y)

XNOR

(X ⊕ Y)

Widely used in arithmetic structures such as adders and multipl

Z = X Y + X Y
X or Y but not both 

("inequality", "difference")

Z = X Y + X Y
X and Y the same 

("equality")
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Generic CMOS Recipe

Vdd

A1
F(A1,…,An)

pullup: make this connection
when we want F(A1,…,An) = 1

pulldown: make this connection
when we want F(A1,…,An) = 0

An

...

...
...

A

B

A   B   PDN  PUN     O
0    0     0ff      0n 1
0    1     0ff      0n 1
1    0     0ff      0n 1
1    1     0n 0ff       0

B

A

CL

PUN

PDN

How do you build a 2-input NOR Gate?

A
B

Note: CMOS gates 
result in inverting 
functions!
(easier to build 
NAND vs. AND)

O
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Theorems of Boolean Algebra (I)

Elementary
1.   X + 0 = X 1D.   X • 1 = X
2.   X + 1 = 1 2D.   X • 0 = 0
3.   X + X = X 3D.   X • X = X
4. (X) = X
5.   X + X = 1 5D.   X • X = 0

Commutativity:
6.   X + Y = Y + X 6D.   X • Y = Y • X

Associativity:
7.   (X + Y) + Z = X + (Y + Z) 7D.   (X • Y) • Z = X • (Y • Z)

Distributivity:
8.   X • (Y + Z) = (X • Y) + (X • Z) 8D.   X + (Y • Z) = (X + Y) • (X + Z)

Uniting:
9.   X • Y + X • Y = X 9D.   (X + Y) • (X + Y) = X

Absorption:
10. X + X • Y = X 10D.   X • (X + Y) = X
11. (X + Y) • Y = X • Y 11D.   (X • Y) + Y = X + Y
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Theorems of Boolean Algebra (II)

Factoring:
12. (X • Y) + (X • Z) = 12D.   (X + Y) • (X + Z) =                               

X • (Y + Z) X + (Y • Z)

Consensus:
13. (X • Y) + (Y • Z) + (X • Z) =  13D.  (X + Y) • (Y + Z) • (X + Z) =

X • Y + X • Z (X + Y) • (X + Z)

De Morgan's:
14. (X + Y + ...) = X • Y • ... 14D. (X • Y • ...) = X + Y + ...

Generalized De Morgan's:
15. f(X1,X2,...,Xn,0,1,+,•) =  f(X1,X2,...,Xn,1,0,•,+)

Duality
Dual of a Boolean expression is derived by replacing • by +, + by •, 0 

by 1, and 1 by 0, and leaving variables unchanged
f (X1,X2,...,Xn,0,1,+,•) ⇔ f(X1,X2,...,Xn,1,0,•,+)
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Simple Example: One Bit Adder

1-bit binary adder
inputs: A, B, Carry-in
outputs: Sum, Carry-out

A
B

Cin
Cout

S

A B Cin S Cout

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0
1
1
0
1
0
0
1

0
0
0
1
0
1
1
1

Sum-of-Products Canonical Form

S = A B Cin + A B Cin + A B Cin + A B Cin

Cout = A B Cin + A B Cin + A B Cin + A B Cin

Product term (or minterm)
ANDed product of literals – input combination for which output 
is true
Each variable appears exactly once, in true or inverted form (but 
not both)
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Simplify Boolean Expressions

Cout =  A B Cin + A B Cin + A B Cin + A B Cin

=  A B Cin  +  A B Cin +  A B Cin  + A B Cin + A B Cin  +  A B Cin

=  (A + A) B Cin  + A (B + B) Cin + A B (Cin +  Cin)

=  B Cin  + A Cin + A B

=  (B + A) Cin  +  A B

S = A B Cin + A B Cin + A B Cin + A B Cin

=( A B + A B )Cin +  (A B + A B) Cin 

=(A ⊕ B) Cin + (A ⊕ B) Cin
= A ⊕ B ⊕ Cin 
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Sum-of-Products & Product-of-Sum 

short-hand notation form in terms of 3 variables

A B C minterms
0 0 0 A  B  C m0
0 0 1 A  B  C m1
0 1 0 A  B  C m2
0 1 1 A  B  C m3
1 0 0 A  B  C m4
1 0 1 A  B  C m5
1 1 0 A  B  C m6
1 1 1 A  B  C m7

F in canonical form:
F(A, B, C) = Σm(1,3,5,6,7)

=  m1 + m3 + m5 + m6 + m7

canonical form ≠ minimal form
F(A, B, C) = A B C + A B C + AB C + ABC + ABC  

= (A B  + A B + AB  + AB)C + ABC 
= ((A  + A)(B  + B))C + ABC 
= C + ABC = ABC  + C = AB + C

Product term (or minterm): ANDed product of literals – input combination for which output is true

F = + A B C+ A B C + A B C + ABCA B C

A B C maxterms
0 0 0 A + B + C M0
0 0 1 A + B + C M1
0 1 0 A + B + C M2
0 1 1 A + B + C M3
1 0 0 A + B + C M4
1 0 1 A + B+ C M5
1 1 0 A + B +C M6
1 1 1 A +B + C M7

short-hand notation for maxterms of 3 variables

F in canonical form:
F(A, B, C) = ΠM(0,2,4)

=  M0 • M2 • M4
=  (A + B + C) (A + B  + C) (A  + B + C)

canonical form ≠ minimal form
F(A, B, C) = (A + B + C) (A + B  + C) (A  + B + C)

= (A + B + C) (A + B  + C)
(A + B + C) (A  + B + C)

= (A + C) (B + C)

Sum term (or maxterm) - ORed sum of literals – input combination for which output is false
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The Uniting Theorem

A B F

0 0 1

0 1 0

1 0 1

1 1 0

B has the same value in both on-set rows
– B remains

A has a different value in the two rows
– A is eliminated

F = A B +AB  = (A +A)B  = B 

Key tool to simplification: A (B + B) = A
Essence of simplification of two-level logic

Find two element subsets of the ON-set where only one variable 
changes its value – this single varying variable can be 
eliminated and a single product term used to represent both 
elements
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Boolean Cubes

1-cube
X

0 1

Just another way to represent truth table
Visual technique for identifying when the uniting theorem 
can be applied
n input variables = n-dimensional "cube"
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A B F

0 0 1

0 1 0

1 0 1

1 1 0

ON-set = solid nodes
OFF-set = empty nodes

Circled group of the on-set is called the
adjacency plane. Each adjacency plane  
corresponds to a product term. 

A varies within face, B does not
this face represents the literal B

Mapping Truth Tables onto Boolean Cubes

Uniting theorem

A

B

11

00

01

10

F

A B Cin Cout
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Cout = BCin+AB+ACin

A(B+B)Cin
The on-set is completely covered by the combination (OR) of the subcubes of 
lower dimensionality - note that “111” is covered three times

A

B C

000

111

101

(A+A)BCin AB(Cin+Cin)

Three variable example: Binary full-adder carry-out logic
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Higher Dimension Cubes

F(A,B,C) = Σm(4,5,6,7)
on-set forms a square
i.e., a cube of dimension 2 (2-D adjacency plane)
represents an expression in one variable       
i.e., 3 dimensions  – 2 dimensions
A is asserted (true) and unchanged
B and C vary

This subcube represents the literal A
A

B C

000

111

101

100

001
010

011
110

In a 3-cube (three variables):
0-cube, i.e., a single node, yields a term in 3 literals
1-cube, i.e., a line of two nodes, yields a term in 2 literals
2-cube, i.e., a plane of four nodes, yields a term in 1 literal
3-cube, i.e., a cube of eight nodes, yields a constant term "1"

In general,
m-subcube within an n-cube (m < n) yields a term with n – m 
literals
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Karnaugh Maps

A B F
0 0 1
0 1 0
1 0 1
1 1 0

Alternative to truth-tables to help visualize adjacencies
Guide to applying the uniting theorem - On-set elements with only one 
variable changing value are adjacent unlike in a linear truth-table

0 2

1 3

0 1
A

B
0

1

1

0 0

1

Numbering scheme based on Gray–code
e.g., 00, 01, 11, 10 (only a single bit changes in code for adjacent map cells)
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K-map
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K-Map Examples

Cout = F(A,B,C) = 

F(A,B,C) = Σm(0,4,5,7)

F = F'(A,B,C) = Σm(1,2,3,6)

F' = 

F' simply replace 1's with 0's and vice versa
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Four Variable Karnaugh Map

F(A,B,C,D) = Σm(0,2,3,5,6,7,8,10,11,14,15)

F = C  +  A  B D  +  B  D 

K-map Corner Adjacency
Illustrated in the 4-Cube

Find the smallest number
of the largest possible

subcubes that cover the
ON-set

0011 

D 

0010 

0000 

0111 

0110 

0001 C 

A 

B 0100 
1000 

1100 

1101 

1111 

1110 

1001 

1011 

1010 

0101 
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K-Map Example: Don’t Cares

F(A,B,C,D) = Σm(1,3,5,7,9) + Σd(6,12,13)

F = A D  +  B  C  D   w/o don't cares

F = C  D  +  A  D   w/ don't cares

Don't Cares can be treated as 1's or 0's if it is advantageous to do so

By treating this DC as a "1", a 2-cube
can be formed rather than one 0-cube

In PoS form: F = D (A  + C)

Equivalent answer as above, 
but fewer literals
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Hazards
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Fixing Hazards

In general, it is difficult to avoid hazards – need a robust
design methodology to deal with hazards.  
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