
L2: 6.111 Spring 2009 1Introductory Digital Systems Laboratory

L2: Combinational Logic Design

(Construction and Boolean Algebra)

Acknowledgements:
Lecture material adapted from Chapter 2 of R. Katz, G. Borriello, “Contemporary
Logic Design” (second edition), Pearson Education, 2005.

Some lecture material adapted from J. Rabaey, A. Chandrakasan, B. Nikolic, “Digital
Integrated Circuits: A Design Perspective” Copyright 2003 Prentice Hall/Pearson.

Lecture Based on Notes by Professor Anantha Chandrakasan

L2: 6.111 Spring 2009 2Introductory Digital Systems Laboratory

Review: Noise Margin

IN OUT
IN OUT

0 1

1 0

V(x)

V(y)

VOH

VOL

VIH
V

IL

Slope = -1

Slope = -1

VOL
VOH

"1"

"0"

VOH
VIH

VIL
VOL

Undefined
Region

Large noise margins protect against various noise sources

NML= VIL -VOL

NMH= VOH -VIH

Truth Table

L2: 6.111 Spring 2009 3Introductory Digital Systems Laboratory

TTL Logic Style (1970’s-early 80’s)

74LS04
(courtesy TI)

+

-
vBE

+

-

vCE

E

C

B

Q1
Q2

Q3

L2: 6.111 Spring 2009 4Introductory Digital Systems Laboratory

MOS Technology: The NMOS Switch

D

G

S

gate

N+
P-substrate

N+

drainsource

RNMOSSwitch
Model

VT = 0.5V

VGS < VT

OFF RNMOS

VGS > VT

ON

Vs

NMOS ON when Switch Input is High

L2: 6.111 Spring 2009 5Introductory Digital Systems Laboratory

NMOS Device Characteristics

0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

6
x 10-4

VDS(V)
I D

(A
)

VGS= 2.5 V

VGS= 2.0 V

VGS= 1.5 V

VGS= 1.0 V

Resistive Saturation

Polysilicon
Aluminum

D

G

S

VT = 0.5V

ID

+

-
VGS

MOS is a very non-linear.
Switch-resistor model

sufficient for first order
analysis.

L2: 6.111 Spring 2009 6Introductory Digital Systems Laboratory

PMOS: The Complementary Switch

S

G

D

gate

P+
N-substrate

P+

drainsource

RPMOS
Switch
Model

VT = -0.5V

VGS > VT

OFF RPMOS

VGS < VT

ON

PMOS ON when Switch Input is Low

VDD

L2: 6.111 Spring 2009 7Introductory Digital Systems Laboratory

The CMOS Inverter

IN OUT

VDD
VDD

OUT

RPMOS

RNMOS

IN

IN

Switch Model

S

G

D

D

S

G

Rail-to-rail Swing in CMOS

L2: 6.111 Spring 2009 8Introductory Digital Systems Laboratory

Inverter VTC: Load Line Analysis

IN OUT

VDD

S
G

D

D

S

G

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

V
in

 (V)

V
ou

t(V
)CMOS gates have:

Rail-to-rail swing (0V to VDD)
Large noise margins
“zero” static power dissipation

L2: 6.111 Spring 2009 9Introductory Digital Systems Laboratory

Possible Function of Two Inputs

X

Y
F

X Y 16 possible functions (F0–F15)

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

X Y

X NOR Y
NOT (X OR Y)

X NAND Y
NOT (X AND Y)

10 NOT X
X AND Y

X OR Y

NOT Y
X XOR Y X = Y

There are 16 possible functions of 2 input variables:

In general, there are 2 (2^n) functions of n inputs

L2: 6.111 Spring 2009 10Introductory Digital Systems Laboratory

Common Logic Gates

X
Y Z

Z
X
Y

X Y Z

0 0 1
0 1 1
1 0 1
1 1 0

NAND

Gate Symbol Truth-Table Expression

X Y Z

0 0 1
0 1 0
1 0 0
1 1 0

NOR

Z = X • Y

Z = X + Y

Z
X
Y

X Y Z

0 0 0
0 1 1
1 0 1
1 1 1

OR Z = X + Y

X
Y Z

X Y Z

0 0 0
0 1 0
1 0 0
1 1 1

AND
Z = X • Y

L2: 6.111 Spring 2009 11Introductory Digital Systems Laboratory

Exclusive (N)OR Gate

X
Y Z

Z
X
Y

X Y Z

0 0 0
0 1 1
1 0 1
1 1 0

X Y Z

0 0 1
0 1 0
1 0 0
1 1 1

XOR
(X ⊕ Y)

XNOR

(X ⊕ Y)

Widely used in arithmetic structures such as adders and multipl

Z = X Y + X Y
X or Y but not both

("inequality", "difference")

Z = X Y + X Y
X and Y the same

("equality")

L2: 6.111 Spring 2009 12Introductory Digital Systems Laboratory

Generic CMOS Recipe

Vdd

A1
F(A1,…,An)

pullup: make this connection
when we want F(A1,…,An) = 1

pulldown: make this connection
when we want F(A1,…,An) = 0

An

...

...
...

A

B

A B PDN PUN O
0 0 0ff 0n 1
0 1 0ff 0n 1
1 0 0ff 0n 1
1 1 0n 0ff 0

B

A

CL

PUN

PDN

How do you build a 2-input NOR Gate?

A
B

Note: CMOS gates
result in inverting
functions!
(easier to build
NAND vs. AND)

O

L2: 6.111 Spring 2009 13Introductory Digital Systems Laboratory

Theorems of Boolean Algebra (I)

Elementary
1. X + 0 = X 1D. X • 1 = X
2. X + 1 = 1 2D. X • 0 = 0
3. X + X = X 3D. X • X = X
4. (X) = X
5. X + X = 1 5D. X • X = 0

Commutativity:
6. X + Y = Y + X 6D. X • Y = Y • X

Associativity:
7. (X + Y) + Z = X + (Y + Z) 7D. (X • Y) • Z = X • (Y • Z)

Distributivity:
8. X • (Y + Z) = (X • Y) + (X • Z) 8D. X + (Y • Z) = (X + Y) • (X + Z)

Uniting:
9. X • Y + X • Y = X 9D. (X + Y) • (X + Y) = X

Absorption:
10. X + X • Y = X 10D. X • (X + Y) = X
11. (X + Y) • Y = X • Y 11D. (X • Y) + Y = X + Y

L2: 6.111 Spring 2009 14Introductory Digital Systems Laboratory

Theorems of Boolean Algebra (II)

Factoring:
12. (X • Y) + (X • Z) = 12D. (X + Y) • (X + Z) =

X • (Y + Z) X + (Y • Z)

Consensus:
13. (X • Y) + (Y • Z) + (X • Z) = 13D. (X + Y) • (Y + Z) • (X + Z) =

X • Y + X • Z (X + Y) • (X + Z)

De Morgan's:
14. (X + Y + ...) = X • Y • ... 14D. (X • Y • ...) = X + Y + ...

Generalized De Morgan's:
15. f(X1,X2,...,Xn,0,1,+,•) = f(X1,X2,...,Xn,1,0,•,+)

Duality
Dual of a Boolean expression is derived by replacing • by +, + by •, 0

by 1, and 1 by 0, and leaving variables unchanged
f (X1,X2,...,Xn,0,1,+,•) ⇔ f(X1,X2,...,Xn,1,0,•,+)

L2: 6.111 Spring 2009 15Introductory Digital Systems Laboratory

Simple Example: One Bit Adder

1-bit binary adder
inputs: A, B, Carry-in
outputs: Sum, Carry-out

A
B

Cin
Cout

S

A B Cin S Cout

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0
1
1
0
1
0
0
1

0
0
0
1
0
1
1
1

Sum-of-Products Canonical Form

S = A B Cin + A B Cin + A B Cin + A B Cin

Cout = A B Cin + A B Cin + A B Cin + A B Cin

Product term (or minterm)
ANDed product of literals – input combination for which output
is true
Each variable appears exactly once, in true or inverted form (but
not both)

L2: 6.111 Spring 2009 16Introductory Digital Systems Laboratory

Simplify Boolean Expressions

Cout = A B Cin + A B Cin + A B Cin + A B Cin

= A B Cin + A B Cin + A B Cin + A B Cin + A B Cin + A B Cin

= (A + A) B Cin + A (B + B) Cin + A B (Cin + Cin)

= B Cin + A Cin + A B

= (B + A) Cin + A B

S = A B Cin + A B Cin + A B Cin + A B Cin

=(A B + A B)Cin + (A B + A B) Cin

=(A ⊕ B) Cin + (A ⊕ B) Cin
= A ⊕ B ⊕ Cin

L2: 6.111 Spring 2009 17Introductory Digital Systems Laboratory

Sum-of-Products & Product-of-Sum

short-hand notation form in terms of 3 variables

A B C minterms
0 0 0 A B C m0
0 0 1 A B C m1
0 1 0 A B C m2
0 1 1 A B C m3
1 0 0 A B C m4
1 0 1 A B C m5
1 1 0 A B C m6
1 1 1 A B C m7

F in canonical form:
F(A, B, C) = Σm(1,3,5,6,7)

= m1 + m3 + m5 + m6 + m7

canonical form ≠ minimal form
F(A, B, C) = A B C + A B C + AB C + ABC + ABC

= (A B + A B + AB + AB)C + ABC
= ((A + A)(B + B))C + ABC
= C + ABC = ABC + C = AB + C

Product term (or minterm): ANDed product of literals – input combination for which output is true

F = + A B C+ A B C + A B C + ABCA B C

A B C maxterms
0 0 0 A + B + C M0
0 0 1 A + B + C M1
0 1 0 A + B + C M2
0 1 1 A + B + C M3
1 0 0 A + B + C M4
1 0 1 A + B+ C M5
1 1 0 A + B +C M6
1 1 1 A +B + C M7

short-hand notation for maxterms of 3 variables

F in canonical form:
F(A, B, C) = ΠM(0,2,4)

= M0 • M2 • M4
= (A + B + C) (A + B + C) (A + B + C)

canonical form ≠ minimal form
F(A, B, C) = (A + B + C) (A + B + C) (A + B + C)

= (A + B + C) (A + B + C)
(A + B + C) (A + B + C)

= (A + C) (B + C)

Sum term (or maxterm) - ORed sum of literals – input combination for which output is false

L2: 6.111 Spring 2009 18Introductory Digital Systems Laboratory

The Uniting Theorem

A B F

0 0 1

0 1 0

1 0 1

1 1 0

B has the same value in both on-set rows
– B remains

A has a different value in the two rows
– A is eliminated

F = A B +AB = (A +A)B = B

Key tool to simplification: A (B + B) = A
Essence of simplification of two-level logic

Find two element subsets of the ON-set where only one variable
changes its value – this single varying variable can be
eliminated and a single product term used to represent both
elements

L2: 6.111 Spring 2009 19Introductory Digital Systems Laboratory

Boolean Cubes

1-cube
X

0 1

Just another way to represent truth table
Visual technique for identifying when the uniting theorem
can be applied
n input variables = n-dimensional "cube"

2-cube

X

Y

11

00

01

10

WXYZ

0111
0011

0010

0000

0001

0110

1010

0101

0100
1000

1011

1001

1110

1111

1101

1100
Y

Z
W

X
3-cube

XYZ

X

011

010

000

001

111

110

100

101
Y Z

4-cube

XY

L2: 6.111 Spring 2009 20Introductory Digital Systems Laboratory

A B F

0 0 1

0 1 0

1 0 1

1 1 0

ON-set = solid nodes
OFF-set = empty nodes

Circled group of the on-set is called the
adjacency plane. Each adjacency plane
corresponds to a product term.

A varies within face, B does not
this face represents the literal B

Mapping Truth Tables onto Boolean Cubes

Uniting theorem

A

B

11

00

01

10

F

A B Cin Cout
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Cout = BCin+AB+ACin

A(B+B)Cin
The on-set is completely covered by the combination (OR) of the subcubes of
lower dimensionality - note that “111” is covered three times

A

B C

000

111

101

(A+A)BCin AB(Cin+Cin)

Three variable example: Binary full-adder carry-out logic

L2: 6.111 Spring 2009 21Introductory Digital Systems Laboratory

Higher Dimension Cubes

F(A,B,C) = Σm(4,5,6,7)
on-set forms a square
i.e., a cube of dimension 2 (2-D adjacency plane)
represents an expression in one variable
i.e., 3 dimensions – 2 dimensions
A is asserted (true) and unchanged
B and C vary

This subcube represents the literal A
A

B C

000

111

101

100

001
010

011
110

In a 3-cube (three variables):
0-cube, i.e., a single node, yields a term in 3 literals
1-cube, i.e., a line of two nodes, yields a term in 2 literals
2-cube, i.e., a plane of four nodes, yields a term in 1 literal
3-cube, i.e., a cube of eight nodes, yields a constant term "1"

In general,
m-subcube within an n-cube (m < n) yields a term with n – m
literals

L2: 6.111 Spring 2009 22Introductory Digital Systems Laboratory

Karnaugh Maps

A B F
0 0 1
0 1 0
1 0 1
1 1 0

Alternative to truth-tables to help visualize adjacencies
Guide to applying the uniting theorem - On-set elements with only one
variable changing value are adjacent unlike in a linear truth-table

0 2

1 3

0 1
A

B
0

1

1

0 0

1

Numbering scheme based on Gray–code
e.g., 00, 01, 11, 10 (only a single bit changes in code for adjacent map cells)

A
B 0 1

0

1

0

1

2

3

0

1

2

3

6

7

4

5

AB
C

0

1

3

2

4

5

7

6

12

13

15

14

8

9

11

10

A

B

AB
CD

A

00 01 11 10

0

1

00 01 11 10

00

01

11

10
C

B

D

2-variable
K-map

3-variable
K-map

4-variable
K-map

L2: 6.111 Spring 2009 23Introductory Digital Systems Laboratory

K-Map Examples

Cout = F(A,B,C) =

F(A,B,C) = Σm(0,4,5,7)

F = F'(A,B,C) = Σm(1,2,3,6)

F' =

F' simply replace 1's with 0's and vice versa

L2: 6.111 Spring 2009 24Introductory Digital Systems Laboratory

Four Variable Karnaugh Map

F(A,B,C,D) = Σm(0,2,3,5,6,7,8,10,11,14,15)

F = C + A B D + B D

K-map Corner Adjacency
Illustrated in the 4-Cube

Find the smallest number
of the largest possible

subcubes that cover the
ON-set

0011

D

0010

0000

0111

0110

0001 C

A

B 0100
1000

1100

1101

1111

1110

1001

1011

1010

0101

L2: 6.111 Spring 2009 25Introductory Digital Systems Laboratory

K-Map Example: Don’t Cares

F(A,B,C,D) = Σm(1,3,5,7,9) + Σd(6,12,13)

F = A D + B C D w/o don't cares

F = C D + A D w/ don't cares

Don't Cares can be treated as 1's or 0's if it is advantageous to do so

By treating this DC as a "1", a 2-cube
can be formed rather than one 0-cube

In PoS form: F = D (A + C)

Equivalent answer as above,
but fewer literals

L2: 6.111 Spring 2009 26Introductory Digital Systems Laboratory

Hazards

L2: 6.111 Spring 2009 27Introductory Digital Systems Laboratory

Fixing Hazards

In general, it is difficult to avoid hazards – need a robust
design methodology to deal with hazards.

	L2: Combinational Logic Design ��(Construction and Boolean Algebra)
	Review: Noise Margin
	TTL Logic Style (1970’s-early 80’s)
	MOS Technology: The NMOS Switch
	NMOS Device Characteristics
	PMOS: The Complementary Switch
	The CMOS Inverter
	Inverter VTC: Load Line Analysis
	Possible Function of Two Inputs
	Common Logic Gates
	Exclusive (N)OR Gate
	Generic CMOS Recipe
	Theorems of Boolean Algebra (I)
	Theorems of Boolean Algebra (II)
	Simple Example: One Bit Adder
	Simplify Boolean Expressions
	Sum-of-Products & Product-of-Sum
	The Uniting Theorem
	Boolean Cubes
	Slide Number 20
	Higher Dimension Cubes
	Karnaugh Maps
	K-Map Examples
	Four Variable Karnaugh Map
	K-Map Example: Don’t Cares
	Hazards
	Fixing Hazards

