

L2: Combinational Logic Design (Construction and Boolean Algebra)

Acknowledgements:

Lecture material adapted from Chapter 2 of R. Katz, G. Borriello, "Contemporary Logic Design" (second edition), Pearson Education, 2005.

Some lecture material adapted from J. Rabaey, A. Chandrakasan, B. Nikolic, "Digital Integrated Circuits: A Design Perspective" Copyright 2003 Prentice Hall/Pearson.

Lecture Based on Notes by Professor Anantha Chandrakasan

Review: Noise Margin

Large noise margins protect against various noise sources

TTL Logic Style (1970's-early 80's)

MOS Technology: The NMOS Switch

NMOS ON when Switch Input is High

Introductory Digital Systems Laboratory

NMOS Device Characteristics

14117

PMOS: The Complementary Switch

l'li i

PMOS ON when Switch Input is Low

The CMOS Inverter

Inverter VTC: Load Line Analysis

There are 16 possible functions of 2 input variables:

In general, there are 2 ^(2^n) functions of n inputs

llii

Common Logic Gates

Introductory Digital Systems Laboratory

XOR (X ⊕ Y)

X	Υ	Ζ
0	0	0
0	1	1
1	0	1
1	1	0

$$Z = X \overline{Y} + \overline{X} Y$$

X or Y but not both
("inequality", "difference")

 $\frac{\mathsf{XNOR}}{(\mathsf{X} \oplus \mathsf{Y})}$

X	Y	Ζ
0	0	1
0	1	0
1	0	0
1	1	1

 $Z = \overline{X} \overline{Y} + X Y$ X and Y the same ("equality")

Widely used in arithmetic structures such as adders and multiple

Generic CMOS Recipe

Introductory Digital Systems Laboratory

Theorems of Boolean Algebra (I)

IIIii

Elementary	
$1. A \neq 0 = A$	$\begin{array}{c} 1D. X \bullet I = X \\ 2D. X \bullet 0 = 0 \end{array}$
2. $X + 1 = 1$	$2D. X \bullet 0 = 0$
3. $X + X = X$	$3D. X \bullet X = X$
4. $(\overline{X}) = X$	
5. $X + \overline{X} = 1$	5D. $X \cdot \overline{X} = 0$
Commutativity:	
6. $X + Y = Y + X$	$6D_{\bullet} X \bullet Y = Y \bullet X$
Associativity:	
7. $(X + Y) + Z = X + (Y + Z)$	7D. $(X \bullet Y) \bullet Z = X \bullet (Y \bullet Z)$
Distributivity:	
8. $X \cdot (Y + Z) = (X \cdot Y) + (X \cdot Z)$	8D. $X + (Y \cdot 7) = (X + Y) \cdot (X + 7)$
(1 + 2) = (7 + 1) + (7 + 2)	(X + Z) = (X + Y) (X + Z)
Uniting:	
$\mathbf{Q} \mathbf{X} \bullet \mathbf{Y} + \mathbf{X} \bullet \overline{\mathbf{Y}} - \mathbf{X}$	$(X + Y) \bullet (X + \overline{Y}) = X$
$\mathbf{J}_{\mathbf{i}} \wedge \mathbf{i} + \mathbf{i} + \mathbf{i} = \mathbf{i}$	$\mathbf{SD}_{\mathbf{L}} \left(\mathbf{X} + \mathbf{I} \right)^{*} \left(\mathbf{X} + \mathbf{I} \right) = \mathbf{X}$
Absorption:	
$10 X \pm X \bullet Y = Y$	10D $X \bullet (X \pm Y) = Y$
$10. X + \overline{X} + \overline{X}$ $11 (X + \overline{X}) \bullet \overline{X} - \overline{X} \bullet \overline{X}$	$11D (X \bullet \overline{X}) + Y = Y + Y$
· · · (^ + · / • · = ^ • ·	

Factoring:

12. $(X \bullet Y) + (X \bullet Z) = X \bullet (Y + Z)$

2D.
$$(X + Y) \cdot (X + Z) = X + (Y \cdot Z)$$

Consensus: 13. (X • Y) + (Y • Z) + (X • Z) = X • Y + X • Z

13D.
$$(X + Y) \cdot (Y + Z) \cdot (\overline{X} + Z) = (X + Y) \cdot (\overline{X} + Z)$$

• De Morgan's: 14. $(\overline{X + Y + ...}) = \overline{X} \cdot \overline{Y} \cdot ...$

14. $(\overline{X + Y + ...}) = \overline{X} \cdot \overline{Y} \cdot ...$ 14D. $(\overline{X \cdot Y \cdot ...}) = \overline{X} + \overline{Y} + ...$

Duality

Dual of a Boolean expression is derived by replacing • by +, + by •, 0 by 1, and 1 by 0, and leaving variables unchanged
 If (V1 V2 - Vp 0.1 + c) ↔ f(V1 V2 - Vp 1.0 + c)

 $\Box f (X1, X2, ..., Xn, 0, 1, +, \bullet) \Leftrightarrow f(X1, X2, ..., Xn, 1, 0, \bullet, +)$

Product term (or minterm)

- ANDed product of literals input combination for which output is true
- Each variable appears exactly once, in true or inverted form (but not both)

Cout =
$$\overline{A}$$
 B Cin + A \overline{B} Cin + A B \overline{Cin} + A B Cin

- = \overline{A} B Cin + A B Cin + A \overline{B} Cin + A B Cin + A B \overline{Cin} + A B Cin
- = $(\overline{A} + A) B Cin + A (\overline{B} + B) Cin + A B (\overline{Cin} + Cin)$
- = B Cin + A Cin + A B
- = (B + A) Cin + A B

$$S = \overline{A} \overline{B} Cin + \overline{A} \overline{B} \overline{Cin} + A \overline{B} \overline{Cin} + A \overline{B} Cin$$
$$= (\overline{A} \overline{B} + A \overline{B})Cin + (A \overline{B} + \overline{A} \overline{B})Cin$$
$$= (\overline{A \oplus B})Cin + (A \oplus B)\overline{Cin}$$
$$= A \oplus B \oplus Cin$$

Sum-of-Products & Product-of-Sum

147

Product term (or minterm): ANDed product of literals – input combination for which output is true

Α	В	С	minterms		F in canonical form:
0	0	0	ABC	m0	$F(A \ B \ C) = \Sigma m(1 \ 3 \ 5 \ 6 \ 7)$
0	0	1	ABC	m1	= m1 + m3 + m5 + m6 + m7
0	1	0	A B C	m2	$F = \overline{A} \overline{B} C + \overline{A} B C + A \overline{B} C + A B \overline{C} + ABC$
0	1	1	A B C	m3	canonical form ≠ minimal form
1	0	0	ABC	m4	$F(A, B, C) = \overline{A} \overline{B} C + \overline{A} B C + A\overline{B} C + ABC + AB\overline{C}$
1	0	1	ABC	m5	$= (\overline{A} \overline{B} + \overline{A} B + A\overline{B} + AB)C + AB\overline{C}$
1	1	0	ABC	m6	$= ((\overline{A} + A)(\overline{B} + B))C + AB\overline{C}$
1	1	1	ABC	<mark>,</mark> m7	$= C + AB\overline{C} = AB\overline{C} + C = AB + C$
				/	

short-hand notation form in terms of 3 variables

Sum term (or maxterm) - ORed sum of literals – input combination for which output is false

Α	В	С	maxterms	
0	0	0	A + B + C MO	E in cononical form:
0	0	1	$A + B + \overline{C} M1$	$F(A P C) = \pi A(0.2.4)$
0	1	0	$A + \overline{B} + C M2$	F(A, B, C) = 11/((0, 2, 4))
0	1	1	$A + \overline{B} + \overline{C} M3$	$= MO \cdot M2 \cdot M4$ $= (A + B + C) (A + \overline{B} + C) (\overline{A} + B + C)$ $= (A + B + C) (A + \overline{B} + C) (\overline{A} + B + C)$ $F(A, B, C) = (A + B + C) (A + \overline{B} + C) (\overline{A} + B + C)$ $= (A + B + C) (A + \overline{B} + C)$
1	0	0	\overline{A} + B + C M4	
1	0	1	Ā + B+ C M5	
1	1	0	$\overline{A} + \overline{B} + C$ M6	
1	1	1	$\overline{A} + \overline{B} + \overline{C} = M7$	= (A + B + C) (A + B + C)
				(A + B + C)(A + B + C) - $(A + C)(B + C)$
rt-hand notation for maxterms of 3 variables				$= ((\cdot \cdot \circ) (\cup \cdot \circ))$

short-hand notation for maxterms of

- Key tool to simplification: A (B + B) = A
- Essence of simplification of two-level logic
 - Find two element subsets of the ON-set where only one variable changes its value – this single varying variable can be eliminated and a single product term used to represent both elements

- Just another way to represent truth table
- Visual technique for identifying when the uniting theorem can be applied
- n input variables = n-dimensional "cube"

IIII Mapping Truth Tables onto Boolean Cubes IIII

Uniting theorem Circled group of the on-set is called the adjacency plane. Each adjacency plane F В F Α corresponds to a product term. 11 01 0 0 ON-set = solid nodes В 0 1 0 OFF-set = empty nodes 1 0 00 A varies within face, B does not 1 1 0 this face represents the literal \overline{B}

Three variable example: Binary full-adder carry-out logic

Higher Dimension Cubes

In a 3-cube (three variables):

O-cube, i.e., a single node, yields a term in 3 literals

- □ 1-cube, i.e., a line of two nodes, yields a term in 2 literals
- □ 2-cube, i.e., a plane of four nodes, yields a term in 1 literal
- □ 3-cube, i.e., a cube of eight nodes, yields a constant term "1"

In general,

m-subcube within an n-cube (m < n) yields a term with n – m literals

- Alternative to truth-tables to help visualize adjacencies
 - Guide to applying the uniting theorem On-set elements with only one variable changing value are adjacent unlike in a linear truth-table

Numbering scheme based on Gray–code

□ e.g., 00, 01, 11, 10 (only a single bit changes in code for adjacent map cells)

Cout =

F(A,B,C) =

F' simply replace 1's with 0's and vice versa

 $F'(A,B,C) = \Sigma m(1,2,3,6)$

Don't Cares can be treated as 1's or 0's if it is advantageous to do so

 $F(A,B,C,D) = \Sigma m(1,3,5,7,9) + \Sigma d(6,12,13)$ $F = \overline{A}D + \overline{B} \overline{C} D \quad w/o \text{ don't cares}$ $F = \overline{C} D + \overline{A} D \quad w/ \text{ don't cares}$ By treating this DC as a "1", a 2-cube

can be formed rather than one 0-cube

Equivalent answer as above, but fewer literals

Hazards

Fixing Hazards

The glitch is the result of timing differences in parallel data paths. It is associated with the function jumping between groupings or product terms on the K-map. To fix it, cover it up with another grouping or product term!

 In general, it is difficult to avoid hazards – need a robust design methodology to deal with hazards.