
L3: 6.111 Spring 2009 1Introductory Digital Systems Laboratory

L3: Introduction to Verilog
(Combinational Logic)

Acknowledgements :
Rex Min
Lecture Notes prepared by Professor Anantha Chandrakasan

Verilog References:
• Samir Palnitkar, Verilog HDL, Pearson Education (2nd edition).
• Donald Thomas, Philip Moorby, The Verilog Hardware Description Language, Fifth
Edition, Kluwer Academic Publishers.
• J. Bhasker, Verilog HDL Synthesis (A Practical Primer), Star Galaxy Publishing

L3: 6.111 Spring 2009 2Introductory Digital Systems Laboratory

Verilog

Synthesis and HDLs

input a,b;
output sum;
assign sum = {1b’0, a} + {1b’0, b};

FPGA PAL ASIC
(Custom ICs)

Hardware description language (HDL) is a convenient, device-
independent representation of digital logic

Netlist
g1 "and" n1 n2 n5
g2 "and" n3 n4 n6
g3 "or" n5 n6 n7

HDL description is compiled
into a netlist

Synthesis optimizes the logic

Mapping targets a specific
hardware platform

Compilation and
Synthesis

Mapping

L3: 6.111 Spring 2009 3Introductory Digital Systems Laboratory

Verilog: The Module

Verilog designs consist of
interconnected modules.

A module can be an element or
collection of lower level design blocks.

A simple module with combinational
logic might look like this:

Declare and name a module; list its
ports. Don’t forget that semicolon.

Specify each port as input, output,
or inout

Express the module’s behavior.
Each statement executes in
parallel; order does not matter.

module mux_2_to_1(a, b, out,

outbar, sel);

// This is 2:1 multiplexor

input a, b, sel;

output out, outbar;

assign out = sel ? a : b;

assign outbar = ~out;

endmodule Conclude the module code.

2-to-1 multiplexer with inverted output

1

0

sel

out
outbar

a

b

Comment starts with //
Verilog skips from // to end of the line

Out = sel ● a + sel ● b

L3: 6.111 Spring 2009 4Introductory Digital Systems Laboratory

Continuous (Dataflow) Assignment

Continuous assignments use the assign keyword
A simple and natural way to represent combinational logic
Conceptually, the right-hand expression is continuously evaluated as a function of
arbitrarily-changing inputs…just like dataflow
The target of a continuous assignment is a net driven by combinational logic
Left side of the assignment must be a scalar or vector net or a concatenation of scalar
and vector nets. It can’t be a scalar or vector register (discussed later). Right side can be
register or nets
Dataflow operators are fairly low-level:

Conditional assignment: (conditional_expression) ? (value-if-true) : (value-if-false);
Boolean logic: ~, &, |
Arithmetic: +, -, *

Nested conditional operator (4:1 mux)
assign out = s1 ? (s0 ? i3 : i2) : (s0? i1 : i0);

module mux_2_to_1(a, b, out,
outbar, sel);

input a, b, sel;
output out, outbar;

assign out = sel ? a : b;
assign outbar = ~out;

endmodule

1

0

sel

out
outbar

a

b

L3: 6.111 Spring 2009 5Introductory Digital Systems Laboratory

Gate Level Description

module muxgate (a, b, out,
outbar, sel);
input a, b, sel;
output out, outbar;
wire out1, out2, selb;
and a1 (out1, a, sel);
not i1 (selb, sel);
and a2 (out2, b , selb);
or o1 (out, out1, out2);
assign outbar = ~out;
endmodule

out

outbar

sel

a

b

Verilog supports basic logic gates as primitives
and, nand, or, nor, xor, xnor, not, buf

can be extended to multiple inputs: e.g., nand nand3in (out, in1, in2,in3);
bufif1 and bufif0 are tri-state buffers

Net represents connections between hardware elements. Nets are
declared with the keyword wire.

out1

out2selb

L3: 6.111 Spring 2009 6Introductory Digital Systems Laboratory

Procedural Assignment with always

module mux_2_to_1(a, b, out,
outbar, sel);

input a, b, sel;
output out, outbar;

reg out, outbar;

always @ (a or b or sel)

begin

if (sel) out = a;
else out = b;

outbar = ~out;

end

endmodule

Procedural assignment allows an alternative, often higher-level, behavioral
description of combinational logic
Two structured procedure statements: initial and always

Supports richer, C-like control structures such as if, for, while,case

Exactly the same as before.

Anything assigned in an always
block must also be declared as
type reg (next slide)
Conceptually, the always block
runs once whenever a signal in the
sensitivity list changes value

Statements within the always
block are executed sequentially.
Order matters!

Surround multiple statements in a
single always block with begin/end.

L3: 6.111 Spring 2009 7Introductory Digital Systems Laboratory

Verilog Registers

In digital design, registers represent memory elements (we
will study these in the next few lectures)
Digital registers need a clock to operate and update their
state on certain phase or edge
Registers in Verilog should not be confused with hardware
registers
In Verilog, the term register (reg) simply means a variable
that can hold a value
Verilog registers don’t need a clock and don’t need to be
driven like a net. Values of registers can be changed
anytime in a simulation by assuming a new value to the
register

L3: 6.111 Spring 2009 8Introductory Digital Systems Laboratory

Mix-and-Match Assignments

Procedural and continuous assignments can (and often do) co-exist
within a module
Procedural assignments update the value of reg. The value will remain
unchanged till another procedural assignment updates the variable.
This is the main difference with continuous assignments in which the
right hand expression is constantly placed on the left-side

module mux_2_to_1(a, b, out,
outbar, sel);

input a, b, sel;
output out, outbar;
reg out;

always @ (a or b or sel)
begin

if (sel) out = a;
else out = b;

end

assign outbar = ~out;

endmodule

procedural
description

continuous
description

1

0

sel

out
a

b outbar

L3: 6.111 Spring 2009 9Introductory Digital Systems Laboratory

The case Statement

case and if may be used interchangeably to implement
conditional execution within always blocks

case is easier to read than a long string of if...else statements

module mux_2_to_1(a, b, out,
outbar, sel);

input a, b, sel;
output out, outbar;
reg out;

always @ (a or b or sel)
begin

if (sel) out = a;
else out = b;

end

assign outbar = ~out;

endmodule

module mux_2_to_1(a, b, out,
outbar, sel);

input a, b, sel;
output out, outbar;
reg out;

always @ (a or b or sel)
begin

case (sel)
1’b1: out = a;
1’b0: out = b;

endcase
end

assign outbar = ~out;

endmodule

Note: Number specification notation: <size>’<base><number>
(4’b1010 if a 4-bit binary value, 16’h6cda is a 16 bit hex number, and 8’d40 is an 8-bit decimal value)

L3: 6.111 Spring 2009 10Introductory Digital Systems Laboratory

The Power of Verilog: n-bit Signals

Multi-bit signals and buses are easy in Verilog.
2-to-1 multiplexer with 8-bit operands:

1

0

sel

out

outbar

a

b

8

8

8

8

module mux_2_to_1(a, b, out,
outbar, sel);

input[7:0] a, b;
input sel;
output[7:0] out, outbar;
reg[7:0] out;

always @ (a or b or sel)
begin

if (sel) out = a;
else out = b;

end

assign outbar = ~out;

endmodule

L3: 6.111 Spring 2009 11Introductory Digital Systems Laboratory

Concatenate signals using the { } operator

{m,n} Concatenate m to n, creating larger vector

// if the MSB of a is high, this module
// concatenates 1111 to the vector. With signed
// binary numbers, this is called sign extension.

module sign_extend(a, out);
input [3:0] a;
output [7:0] out;

assign out = a[3] ? {4'b1111,a} : {4'b0000,a};
endmodule

L3: 6.111 Spring 2009 12Introductory Digital Systems Laboratory

The Power of Verilog: Integer Arithmetic

Verilog’s built-in arithmetic makes a 32-bit adder easy:

A 32-bit adder with carry-in and carry-out:

module add32(a, b, sum);
input[31:0] a,b;
output[31:0] sum;
assign sum = a + b;

endmodule

module add32_carry(a, b, cin, sum, cout);
input[31:0] a,b;
input cin;
output[31:0] sum;
output cout;
assign {cout, sum} = a + b + cin;

endmodule

L3: 6.111 Spring 2009 13Introductory Digital Systems Laboratory

Dangers of Verilog: Incomplete Specification

module maybe_mux_3to1(a, b, c,
sel, out);

input [1:0] sel;
input a,b,c;
output out;
reg out;

always @(a or b or c or sel)
begin
case (sel)
2'b00: out = a;
2'b01: out = b;
2'b10: out = c;

endcase
end

endmodule

Is this a 3-to-1 multiplexer?

Proposed Verilog Code:Goal:

00

sel

out01

10

a

b

c

2

3-to-1 MUX
(‘11’ input is a don’t-care)

L3: 6.111 Spring 2009 14Introductory Digital Systems Laboratory

Latch memory “latches”
old data when G=0 (we
will discuss latches later)
In practice, we almost
never intend this

Incomplete Specification Infers Latches

module maybe_mux_3to1(a, b, c,
sel, out);

input [1:0] sel;
input a,b,c;
output out;
reg out;

always @(a or b or c or sel)
begin

case (sel)
2'b00: out = a;
2'b01: out = b;
2'b10: out = c;

endcase
end

endmodule

if out is not assigned
during any pass through

the always block, then the
previous value must be

retained!

00

sel

out01

10

a

b

c

2

D Q

G

sel[1]
sel[0]

Synthesized Result:

L3: 6.111 Spring 2009 15Introductory Digital Systems Laboratory

Avoiding Incomplete Specification

Precede all conditionals
with a default assignment
for all signals assigned
within them…

always @(a or b or c or sel)
begin

out = 1’bx;
case (sel)

2'b00: out = a;
2'b01: out = b;
2'b10: out = c;

endcase
end

endmodule

always @(a or b or c or sel)
begin
case (sel)

2'b00: out = a;
2'b01: out = b;
2'b10: out = c;
default: out = 1’bx;

endcase
end

endmodule

…or, fully specify all
branches of conditionals and
assign all signals from all
branches

For each if, include else
For each case, include default

L3: 6.111 Spring 2009 16Introductory Digital Systems Laboratory

Dangers of Verilog: Priority Logic

module binary_encoder(i, e);
input [3:0] i;
output [1:0] e;
reg [1:0] e;

always @(i)
begin

if (i[0]) e = 2’b00;
else if (i[1]) e = 2’b01;
else if (i[2]) e = 2’b10;
else if (i[3]) e = 2’b11;
else e = 2’bxx;

end
endmodule

What is the resulting circuit?

Proposed Verilog Code:Goal:

I3
I2
I1
I0

4-to-2 Binary Encoder

E1
E0

1
0

0
1
0
0

I3 I2 I1 I0
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

all others

E1 E0

0 0
0 1
1 0
1 1
X X

L3: 6.111 Spring 2009 17Introductory Digital Systems Laboratory

if (i[0]) e = 2’b00;
else if (i[1]) e = 2’b01;
else if (i[2]) e = 2’b10;
else if (i[3]) e = 2’b11;
else e = 2’bxx;
end

Priority Logic

if-else and case statements are interpreted very literally!
Beware of unintended priority logic.

Intent: if more than one input is
1, the result is a don’t-care.

I3 I2 I1 I0
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

all others

E1 E0

0 0
0 1
1 0
1 1
X X

Code: if i[0] is 1, the result is 00
regardless of the other inputs.
i[0] takes the highest priority.

1

i[0]

0

2’b001

i[1]

0

2’b011

i[2]

0

2’b101

i[3]

0

2’b11

2’bxx e[1:0]

Inferred
Result:

L3: 6.111 Spring 2009 18Introductory Digital Systems Laboratory

Avoiding (Unintended) Priority Logic

Make sure that if-else and case statements are parallel
If mutually exclusive conditions are chosen for each branch...
...then synthesis tool can generate a simpler circuit that evaluates
the branches in parallel

module binary_encoder(i, e);
input [3:0] i;
output [1:0] e;
reg [1:0] e;

always @(i)
begin
if (i == 4’b0001) e = 2’b00;
else if (i == 4’b0010) e = 2’b01;
else if (i == 4’b0100) e = 2’b10;
else if (i == 4’b1000) e = 2’b11;
else e = 2’bxx;

end
endmodule

Minimized Result:Parallel Code:

I3

I1
I0

E0

E1

L3: 6.111 Spring 2009 19Introductory Digital Systems Laboratory

Interconnecting Modules

Modularity is essential to the success of large designs
A Verilog module may contain submodules that are “wired together”
High-level primitives enable direct synthesis of behavioral descriptions (functions such
as additions, subtractions, shifts (<< and >>), etc.

A[31:0] B[31:0]

+ - *

0 1 0 1

32’d1 32’d1

00 01 10

R[31:0]

F[0]

F[2:1]

F[2:0]

Example: A 32-bit ALU

F2 F1 F0

0 0 0
0 0 1
0 1 0
0 1 1
1 0 X

Function

A + B
A + 1
A - B
A - 1
A * B

Function Table

L3: 6.111 Spring 2009 20Introductory Digital Systems Laboratory

Module Definitions

2-to-1 MUX 3-to-1 MUX

32-bit Adder 32-bit Subtracter 16-bit Multiplier

module mux32two(i0,i1,sel,out);
input [31:0] i0,i1;
input sel;
output [31:0] out;

assign out = sel ? i1 : i0;

endmodule

module mux32three(i0,i1,i2,sel,out);
input [31:0] i0,i1,i2;
input [1:0] sel;
output [31:0] out;
reg [31:0] out;

always @ (i0 or i1 or i2 or sel)
begin
case (sel)
2’b00: out = i0;
2’b01: out = i1;
2’b10: out = i2;
default: out = 32’bx;

endcase
end
endmodule

module add32(i0,i1,sum);
input [31:0] i0,i1;
output [31:0] sum;

assign sum = i0 + i1;

endmodule

module sub32(i0,i1,diff);
input [31:0] i0,i1;
output [31:0] diff;

assign diff = i0 - i1;

endmodule

module mul16(i0,i1,prod);
input [15:0] i0,i1;
output [31:0] prod;

// this is a magnitude multiplier
// signed arithmetic later
assign prod = i0 * i1;

endmodule

L3: 6.111 Spring 2009 21Introductory Digital Systems Laboratory

Top-Level ALU Declaration

Given submodules:

Declaration of the ALU Module:

module mux32two(i0,i1,sel,out);

module mux32three(i0,i1,i2,sel,out);

module add32(i0,i1,sum);

module sub32(i0,i1,diff);

module mul16(i0,i1,prod);

module alu(a, b, f, r);

input [31:0] a, b;

input [2:0] f;

output [31:0] r;

wire [31:0] addmux_out, submux_out;

wire [31:0] add_out, sub_out, mul_out;

mux32two adder_mux(b, 32'd1, f[0], addmux_out);

mux32two sub_mux(b, 32'd1, f[0], submux_out);

add32 our_adder(a, addmux_out, add_out);

sub32 our_subtracter(a, submux_out, sub_out);

mul16 our_multiplier(a[15:0], b[15:0], mul_out);

mux32three output_mux(add_out, sub_out, mul_out, f[2:1], r);

endmodule

A[31:0] B[31:0]

+ - *

0 1 0 1

32’d1 32’d1

00 01 10

R[31:0]

F[0]

F[2:1]

F[2:0]

module
names

(unique)
instance
names

corresponding
wires/regs in
module alu

intermediate output nodes

alu

L3: 6.111 Spring 2009 22Introductory Digital Systems Laboratory

ModelSim Output

addition subtraction multiplication

ModelSim used for behavior level simulation (pre-synthesis) – no timing
information
ModelSim can be run as a stand alone tool or from Xilinx ISE which allows
simulation at different levels including Behavioral and Post-Place-and-
Route

L3: 6.111 Spring 2009 23Introductory Digital Systems Laboratory

More on Module Interconnection

Explicit port naming allows port mappings in arbitrary
order: better scaling for large, evolving designs

Built-in Verilog gate primitives may be instantiated as well
Instantiations may omit instance name and must be ordered:

and(out, in1,in2,...inN);

module mux32three(i0,i1,i2,sel,out);

mux32three output_mux(add_out, sub_out, mul_out, f[2:1], r);

mux32three output_mux(.sel(f[2:1]), .out(r), .i0(add_out),

.i1(sub_out), .i2(mul_out));

Given Submodule Declaration:

Module Instantiation with Ordered Ports:

Module Instantiation with Named Ports:

submodule’s
port name

corresponding
wire/reg in

outer module

L3: 6.111 Spring 2009 24Introductory Digital Systems Laboratory

Useful Boolean Operators

Bitwise operators perform bit-sliced operations on vectors
~(4’b0101) = {~0,~1,~0,~1} = 4’b1010
4’b0101 & 4’b0011 = 4’b0001

Logical operators return one-bit (true/false) results
!(4’b0101) = ~1 = 1’b0

Reduction operators act on each bit of a single input vector
&(4’b0101) = 0 & 1 & 0 & 1 = 1’b0

Comparison operators perform a Boolean test on two arguments

~a NOT
a & b AND
a | b OR
a ^ b XOR

a ~^ b XNOR

Bitwise Logical
!a NOT

a && b AND
a || b OR

&a AND
~& NAND
| OR

~| NOR
^ XOR

Reduction
a < b
a > b

a <= b
a >= b

Relational

a == b
a != b

[in]equality
returns x when x
or z in bits. Else

returns 0 or 1

a === b
a !== b

case
[in]equality
returns 0 or 1

based on bit by bit
comparison

Comparison

Note distinction between ~a and !a

L3: 6.111 Spring 2009 25Introductory Digital Systems Laboratory

ModelSim/Testbench Introduction:
Demo this week in Lab by TAs

module full_adder (a, b, cin,
sum, cout);

input a, b, cin;
output sum, cout;
reg sum, cout;

always @(a or b or cin)
begin

sum = a ^ b ^ cin;
cout = (a & b) | (a & cin) | (b & cin);

end
Endmodule

module full_adder_4bit (a, b, cin, sum,
cout);

input[3:0] a, b;
input cin;
output [3:0] sum;
output cout;
wire c1, c2, c3;

// instantiate 1-bit adders
full_adder FA0(a[0],b[0], cin, sum[0], c1);
full_adder FA1(a[1],b[1], c1, sum[1], c2);
full_adder FA2(a[2],b[2], c2, sum[2], c3);
full_adder FA3(a[3],b[3], c3, sum[3], cout);

endmodule

Full Adder (1-bit) Full Adder (4-bit) Testbench

ModelSim Simulation

module test_adder;
reg [3:0] a, b;
reg cin;
wire [3:0] sum;
wire cout;

full_adder_4bit dut(a, b, cin,
sum, cout);

initial
begin

a = 4'b0000;
b = 4'b0000;
cin = 1'b0;
#50;
a = 4'b0101;
b = 4'b1010;
// sum = 1111, cout = 0
#50;
a = 4'b1111;
b = 4'b0001;
// sum = 0000, cout = 1

#50;
a = 4'b0000;
b = 4'b1111;
cin = 1'b1;
// sum = 0000, cout = 1
#50;
a = 4'b0110;
b = 4'b0001;
// sum = 1000, cout = 0

end // initial begin
endmodule // test_adder

Courtesy of F. Honore, D. Milliner

L3: 6.111 Spring 2009 26Introductory Digital Systems Laboratory

Summary

Multiple levels of description: behavior, dataflow, logic and
switch (not used in 6.111)
Gate level is typically not used as it requires working out
the interconnects
Continuous assignment using assign allows specifying
dataflow structures
Procedural Assignment using always allows efficient
behavioral description. Must carefully specify the
sensitivity list
Incomplete specification of case or if statements can
result in non-combinational logic
Verilog registers (reg) is not to be confused with a
hardware memory element
Modular design approach to manage complexity

	L3: Introduction to Verilog �(Combinational Logic)
	Synthesis and HDLs
	Verilog: The Module
	Continuous (Dataflow) Assignment
	Gate Level Description
	Procedural Assignment with always
	Verilog Registers
	Mix-and-Match Assignments
	The case Statement
	The Power of Verilog: n-bit Signals
	Concatenate signals using the { } operator
	The Power of Verilog: Integer Arithmetic
	Dangers of Verilog: Incomplete Specification
	Incomplete Specification Infers Latches
	Avoiding Incomplete Specification
	Dangers of Verilog: Priority Logic
	Priority Logic
	Avoiding (Unintended) Priority Logic
	Interconnecting Modules
	Module Definitions
	Top-Level ALU Declaration
	ModelSim Output
	More on Module Interconnection
	Useful Boolean Operators
	ModelSim/Testbench Introduction:�Demo this week in Lab by TAs
	Summary

