
L6: 6.111 Spring 2009 1Introductory Digital Systems Laboratory

L6: FSMs and Synchronization

Lecture material courtesy of Rex Min

Lecture notes prepared by Professor Anantha Chandrakasan

L6: 6.111 Spring 2009 2Introductory Digital Systems Laboratory

Asynchronous Inputs in Sequential Systems

What about external signals?

Sequential System

Clock

Can’t guarantee
setup and hold
times will be met!

When an asynchronous signal causes a setup/hold
violation...

Clock

Q

D

?

I II III

Transition is missed
on first clock cycle,
but caught on next
clock cycle.

Transition is caught
on first clock cycle.

Output is metastable
for an indeterminate
amount of time.

Q: Which cases are problematic?

L6: 6.111 Spring 2009 3Introductory Digital Systems Laboratory

Asynchronous Inputs in Sequential Systems

All of them can be, if more than one happens
simultaneously within the same circuit.

Idea: ensure that external signals directly feed
exactly one flip-flop

D Q
Sequential System

Clock

This prevents the possibility of I and II occurring in different places in
the circuit, but what about metastability?

D Q

D Q

Q0

Clock

Clock

Q1

Async
Input

Clocked
Synchronous

System

L6: 6.111 Spring 2009 4Introductory Digital Systems Laboratory

Handling Metastability

Preventing metastability turns out to be an impossible problem
High gain of digital devices makes it likely that metastable conditions will
resolve themselves quickly
Solution to metastability: allow time for signals to stabilize

How many registers are necessary?
Depends on many design parameters(clock speed, device speeds, …)
In 6.111, one or maybe two synchronization registers is sufficient

D Q
Complicated

Sequential Logic
System

Clock

D Q D Q

Likeley to be
metastable
right after
sampling

Very unlikely to be
metastable for >1
clock cycle

Extremely unlikely
to be metastable for
>2 clock cycle

L6: 6.111 Spring 2009 5Introductory Digital Systems Laboratory

Finite State Machines

Finite State Machines (FSMs) are a useful abstraction for sequential
circuits with centralized “states” of operation

At each clock edge, combinational logic computes outputs and next
state as a function of inputs and present state

Combinational
Logic

Flip-
Flops

Q D

CLK

inputs
+

present
state

outputs
+

next
state

n n

L6: 6.111 Spring 2009 6Introductory Digital Systems Laboratory

Review: FSM Timing Requirements

Timing requirements for FSM are identical to any generic
sequential system with feedback

T > Tcq + Tlogic + Tsu
Tcq,cd + Tlogic,cd > Thold

Combinational
Logic

Flip-
Flops

Q D

CLK

inputs
+

present
state

outputs
+

next
state

n nTcq

Tsu

Tlogic

Combinational
Logic

Flip-
Flops

Q D

CLK

inputs
+

present
state

outputs
+

next
state

n nTcq,cd

Thold

T

Tlogic,cd

Minimum Clock Period Minimum Delay

L6: 6.111 Spring 2009 7Introductory Digital Systems Laboratory

Two Types of FSMs

Moore and Mealy FSMs are distinguished by their output generation

outputs
yk = fk(S)

inputs
x0...xn

inputs
x0...xn

Moore FSM:

Mealy FSM:

Comb.
Logic

CLK
n

Flip-
Flops

Comb.
Logic

D Q

present state S

n

next
state

S+

S

Comb.
Logic

CLK

Flip-
Flops

Comb.
LogicD Q

n

S+

n

outputs
yk = fk(S, x0...xn)

direct combinational path!

L6: 6.111 Spring 2009 8Introductory Digital Systems Laboratory

Design Example: Level-to-Pulse

A level-to-pulse converter produces a
single-cycle pulse each time its input goes
high.
In other words, it’s a synchronous rising-
edge detector.
Sample uses:

Buttons and switches pressed by humans for
arbitrary periods of time
Single-cycle enable signals for counters

Level to
Pulse

Converter
L P

CLK

Whenever input L goes
from low to high...

...output P produces a
single pulse, one clock

period wide.

L6: 6.111 Spring 2009 9Introductory Digital Systems Laboratory

State Transition Diagrams

Block diagram of desired system:

State transition diagram is a useful FSM representation and design aid

00
Low input,

Waiting for rise
P = 0

01
Edge Detected!

P = 1
High input,

Waiting for fall

D Q
Level to
Pulse
FSM

L P
unsynchronized

user input

Synchronizer Edge Detector

L=1

This is the output that results from
this state. (Moore or Mealy?)

L=0

P = 0

11

Binary values of states

L=0 L=0

L=1

L=1

“if L=0 at the clock edge,
then stay in state 00.”

“if L=1 at the clock edge,
then jump to state 01.”

D Q

CLK

L6: 6.111 Spring 2009 10Introductory Digital Systems Laboratory

Logic Derivation for a Moore FSM

Transition diagram is readily converted to a
state transition table (just a truth table)

00
Low input,

Waiting for rise
P = 0

01
Edge Detected!

P = 1

11
High input,

Waiting for fall
P = 0

L=1 L=1

L=0 L=0

L=1L=0

Current
State In Next

State Out

S1 S0 L S1
+ S0

+ P
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 1
0 1 1 1 1 1
1 1 0 0 0 0
1 1 1 1 1 0

Combinational logic may be derived by Karnaugh maps

Comb.
Logic

CLK
n

Flip-
Flops

Comb.
Logic

D Q

S

n

S+

00 01 11 10
0 0 0 0 X
1 0 1 1 X

00 01 11 10
0 0 0 0 X
1 1 1 1 X

S1S0
L

S1S0
L

for S1
+:

for S0
+: 0 1

0 0 X
1 1 0

S1
for P:

L P

S0

S1
+ = LS0

S0
+ = L

P = S1S0

L6: 6.111 Spring 2009 11Introductory Digital Systems Laboratory

Moore Level-to-Pulse Converter

Moore FSM circuit implementation of level-to-pulse converter:

outputs
yk = fk(S)

inputs
x0...xn

Comb.
Logic

CLK
n

Flip-
Flops

Comb.
Logic

D Q

present state S

n

next
state

S+

D Q

S1
+ = LS0

S0
+ = L

P = S1S0

D Q

S0

S1

CLK

S0
+

S1
+

L P
Q

Q

L6: 6.111 Spring 2009 12Introductory Digital Systems Laboratory

Design of a Mealy Level-to-Pulse

Since outputs are determined by state and inputs, Mealy FSMs may
need fewer states than Moore FSM implementations

0
Input is low

S

Comb.
Logic

CLK

Flip-
Flops

Comb.
LogicD Q

n

S+

n

direct combinational path!

1
Input is high

P

L

State

Clock

1. When L=1 and S=0, this output is
asserted immediately and until the

state transition occurs (or L changes).

2. After the transition to S=1 and as long
as L remains at 1, this output is 0.

L=1 | P=1

L=0 | P=0
L=1 | P=0

L=0 | P=0

Output transitions
immediately.

State transitions at
the clock edge.

1
2

L6: 6.111 Spring 2009 13Introductory Digital Systems Laboratory

Mealy Level-to-Pulse Converter

Mealy FSM circuit implementation of level-to-pulse converter:

0
Input is low

1
Input is high

L=1 | P=1

L=0 | P=0
L=1 | P=0L=0 | P=0

Pres.
State In Next

State Out

S L S+ P
0 0 0 0
0 1 1 1
1 0 0 0
1 1 1 0

D Q
S

CLK

S+

L

P

Q
S

FSM’s state simply remembers the previous value of L

Circuit benefits from the Mealy FSM’s implicit single-cycle
assertion of outputs during state transitions

L6: 6.111 Spring 2009 14Introductory Digital Systems Laboratory

Moore/Mealy Trade-Offs

Remember that the difference is in the output:
Moore outputs are based on state only
Mealy outputs are based on state and input
Therefore, Mealy outputs generally occur one cycle earlier than a Moore:

P

L

State

Clock

Compared to a Moore FSM, a Mealy FSM might...
Be more difficult to conceptualize and design
Have fewer states

P

L

State[0
]

Clock

Moore: delayed assertion of P Mealy: immediate assertion of P

L6: 6.111 Spring 2009 15Introductory Digital Systems Laboratory

COINS ONLY

Co

Sprite

Jolt

Water

LS163

5¢10¢25¢

30¢30¢

The 6.111 Vending Machine

Lab assistants demand a new
soda machine for the 6.111 lab.
You design the FSM controller.

All selections are $0.30.

The machine makes change.
(Dimes and nickels only.)

Inputs: limit 1 per clock
Q - quarter inserted
D - dime inserted
N - nickel inserted

Outputs: limit 1 per clock
DC - dispense can
DD - dispense dime
DN - dispense nickel

L6: 6.111 Spring 2009 16Introductory Digital Systems Laboratory

What States are in the System?

A starting (idle) state:

A state for each possible amount of money captured:

What’s the maximum amount of money captured before purchase?
25 cents (just shy of a purchase) + one quarter (largest coin)

States to dispense change (one per coin dispensed):

idle

got10cgot5c got15c ...

got35c got40c got45c got50c...

got45c Dispense
Nickel

Dispense
Dime

L6: 6.111 Spring 2009 17Introductory Digital Systems Laboratory

A Moore Vender

got10c

got5c

idle

got15c

got20c

got30c
DC=1

got35c
DC=1

got40c
DC=1

got45c
DC=1

got50c
DC=1

chg50b
DD=1

chg50
DD=1

chg45b
DN=1

chg40
DD=1

chg45
DD=1

chg35
DN=1

got25c

N=1

N=1

N=1

N=1

N=1

N=1

Q=1

Q=1

Q=1

Q=1

Q=1

D=1

D=1

D=1

D=1

D=1

D=1 *

* *

*

*

*
*

*

Here’s a first cut at the
state transition diagram.

See a better way?
So do we.

Don’t go away...

*

L6: 6.111 Spring 2009 18Introductory Digital Systems Laboratory

State Reduction

got10c

got5c

idle

got15c

got20c

got30c
DC=1

got35c
DC=1

got40c
DC=1

got45c
DC=1

got50c
DC=1

rtn20
DD=1

rtn10
DD=1

rtn15
DD=1

rtn5
DN=1

got25c

N=1

N=1

N=1

N=1

N=1

N=1

Q=1

Q=1

Q=1

Q=1

Q=1

D=1

D=1

D=1

D=1

D=1

D=1

*

*
*

*

*

*

*

17 states
5 state bits

15 states
4 state bits

*

*

got10c

got5c

idle

got15c

got20c

got30c
DC=1

got35c
DC=1

got40c
DC=1

got45c
DC=1

got50c
DC=1

chg50b
DD=1

chg50
DD=1

chg45b
DN=1

chg40
DD=1

chg45
DD=1

chg35
DN=1

got25c

N=1

N=1

N=1

N=1

N=1

N=1

Q=1

Q=1

Q=1

Q=1

Q=1

D=1

D=1

D=1

D=1

D=1

D=1 *

* *

*

*

*
*

*

Duplicate states have:
The same outputs, and
The same transitions

There are two duplicates
in our original diagram.

L6: 6.111 Spring 2009 19Introductory Digital Systems Laboratory

module mooreVender (N, D, Q, DC, DN, DD,
clk, reset, state);

input N, D, Q, clk, reset;
output DC, DN, DD;
output [3:0] state;
reg [3:0] state, next;

parameter IDLE = 0;
parameter GOT_5c = 1;
parameter GOT_10c = 2;
parameter GOT_15c = 3;
parameter GOT_20c = 4;
parameter GOT_25c = 5;
parameter GOT_30c = 6;
parameter GOT_35c = 7;
parameter GOT_40c = 8;
parameter GOT_45c = 9;
parameter GOT_50c = 10;
parameter RETURN_20c = 11;
parameter RETURN_15c = 12;
parameter RETURN_10c = 13;
parameter RETURN_5c = 14;

always @ (posedge clk or negedge reset)
if (!reset) state <= IDLE;
else state <= next;

Verilog for the Moore Vender

States defined with parameter keyword

State register defined with sequential
always block

Comb.
Logic

CLK
n

State
Register

Comb.
Logic

D Q
n

State register
(sequential always block)

Next-state
combinational logic
(comb. always block with case)

Output combinational
logic block
(comb. always block or assign
statements)

FSMs are easy in Verilog.
Simply write one of each:

L6: 6.111 Spring 2009 20Introductory Digital Systems Laboratory

Verilog for the Moore Vender

always @ (state or N or D or Q) begin

case (state)
IDLE: if (Q) next = GOT_25c;

else if (D) next = GOT_10c;
else if (N) next = GOT_5c;
else next = IDLE;

GOT_5c: if (Q) next = GOT_30c;
else if (D) next = GOT_15c;

else if (N) next = GOT_10c;
else next = GOT_5c;

GOT_10c: if (Q) next = GOT_35c;
else if (D) next = GOT_20c;

else if (N) next = GOT_15c;
else next = GOT_10c;

GOT_15c: if (Q) next = GOT_40c;
else if (D) next = GOT_25c;

else if (N) next = GOT_20c;
else next = GOT_15c;

GOT_20c: if (Q) next = GOT_45c;
else if (D) next = GOT_30c;

else if (N) next = GOT_25c;
else next = GOT_20c;

assign DC = (state == GOT_30c || state == GOT_35c ||
state == GOT_40c || state == GOT_45c ||
state == GOT_50c);

assign DN = (state == RETURN_5c);
assign DD = (state == RETURN_20c || state == RETURN_15c ||

state == RETURN_10c);
endmodule

Next-state logic within a
combinational always block

Combinational output assignment

GOT_25c: if (Q) next = GOT_50c;
else if (D) next = GOT_35c;

else if (N) next = GOT_30c;
else next = GOT_25c;

GOT_30c: next = IDLE;
GOT_35c: next = RETURN_5c;
GOT_40c: next = RETURN_10c;
GOT_45c: next = RETURN_15c;
GOT_50c: next = RETURN_20c;

RETURN_20c: next = RETURN_10c;
RETURN_15c: next = RETURN_5c;
RETURN_10c: next = IDLE;
RETURN_5c: next = IDLE;

default: next = IDLE;
endcase

end

L6: 6.111 Spring 2009 21Introductory Digital Systems Laboratory

Simulation of Moore Vender

got5cidle
got15c

got20c
got45c rtn5

idlertn15

5¢10¢

State

Output

L6: 6.111 Spring 2009 22Introductory Digital Systems Laboratory

Coding Alternative: Two Blocks

always @ (state or N or D or Q) begin

DC = 0; DD = 0; DN = 0; // defaults

case (state)
IDLE: if (Q) next = GOT_25c;

else if (D) next = GOT_10c;
else if (N) next = GOT_5c;
else next = IDLE;

GOT_5c: if (Q) next = GOT_30c;
else if (D) next = GOT_15c;
else if (N) next = GOT_10c;
else next = GOT_5c;

GOT_10c: if (Q) next = GOT_35c;
else if (D) next = GOT_20c;
else if (N) next = GOT_15c;
else next = GOT_10c;

GOT_15c: if (Q) next = GOT_40c;
else if (D) next = GOT_25c;
else if (N) next = GOT_20c;
else next = GOT_15c;

GOT_20c: if (Q) next = GOT_45c;
else if (D) next = GOT_30c;
else if (N) next = GOT_25c;
else next = GOT_20c;

GOT_25c: if (Q) next = GOT_50c;
else if (D) next = GOT_35c;
else if (N) next = GOT_30c;
else next = GOT_25c;

Next-state and output logic combined into a single always block

GOT_30c: begin
DC = 1; next = IDLE;

end
GOT_35c: begin

DC = 1; next = RETURN_5c;
end

GOT_40c: begin
DC = 1; next = RETURN_10c;

end
GOT_45c: begin

DC = 1; next = RETURN_15c;
end

GOT_50c: begin
DC = 1; next = RETURN_20c;

end

RETURN_20c: begin
DD = 1; next = RETURN_10c;

end
RETURN_15c: begin

DD = 1; next = RETURN_5c;
end

RETURN_10c: begin
DD = 1; next = IDLE;

end
RETURN_5c: begin

DN = 1; next = IDLE;
end

default: next = IDLE;
endcase

end

L6: 6.111 Spring 2009 23Introductory Digital Systems Laboratory

FSM Output Glitching

got10c

got20c

D=1

0010

0100

0110

during this state
transition...

...the state registers may
transtion like this...

...causing the
DC output to

glitch like this!

FSM state bits may not transition at precisely the same time
Combinational logic for outputs may contain hazards
Result: your FSM outputs may glitch!

got10c

got20c

got30c

0

0

1

assign DC = (state == GOT_30c || state == GOT_35c ||
state == GOT_40c || state == GOT_45c ||
state == GOT_50c);

If the soda dispenser is glitch-sensitive, your customers can get a 20-cent soda!

glitch

L6: 6.111 Spring 2009 24Introductory Digital Systems Laboratory

Registered FSM Outputs are Glitch-Free

reg DC,DN,DD;

// Sequential always block for state assignment
always @ (posedge clk or negedge reset) begin

if (!reset) state <= IDLE;
else if (clk) state <= next;

DC <= (next == GOT_30c || next == GOT_35c ||
next == GOT_40c || next == GOT_45c ||
next == GOT_50c);

DN <= (next == RETURN_5c);
DD <= (next == RETURN_20c || next == RETURN_15c ||

next == RETURN_10c);
end

n

inputs
Next-
State

Comb.
Logic CLK

Output
Comb.
Logic

present state S

n

next
state

CLK

Output
Registers

D Q

State
Registers

D Q

registered
outputs

Move output
generation into the
sequential always
block

Calculate outputs
based on next state

L6: 6.111 Spring 2009 25Introductory Digital Systems Laboratory

Mealy Vender (covered in Recitation)

got10c

got5c

idle

got15c

got20c

rtn20

rtn10

rtn15

rtn5

got25c

N=1

N=1

N=1

N=1

N=1

D=1

D=1

D=1

D=1
* | DD=1

Q=1

Q=1 | DC=1

Q=1 | DC=1

Q=1 | DC=1

Q=1 | DC=1

* | DD=1

* | DD=1
* | DN=1

D=1 |
DC=1

N=1 | DC=1

D=1 | DC=1

Q=1 | DC=1

got10c

got5c

idle

got15c

got20c

got30c
DC=1

got35c
DC=1

got40c
DC=1

got45c
DC=1

got50c
DC=1

rtn20
DD=1

rtn10
DD=1

rtn15
DD=1

rtn5
DN=1

got25c

N=1

N=1

N=1

N=1

N=1

N=1

Q=1

Q=1

Q=1

Q=1

Q=1

D=1

D=1

D=1

D=1

D=1

D=1

*

*
*

*

*

*
*

*

A Mealy machine can eliminate states devoted solely
to holding an output value.

L6: 6.111 Spring 2009 26Introductory Digital Systems Laboratory

Verilog for Mealy FSM

module mealyVender (N, D, Q, DC, DN, DD, clk, reset, state);
input N, D, Q, clk, reset;
output DC, DN, DD;
reg DC, DN, DD;

output [3:0] state;
reg [3:0] state, next;

parameter IDLE = 0;
parameter GOT_5c = 1;
parameter GOT_10c = 2;
parameter GOT_15c = 3;
parameter GOT_20c = 4;
parameter GOT_25c = 5;
parameter RETURN_20c = 6;
parameter RETURN_15c = 7;
parameter RETURN_10c = 8;
parameter RETURN_5c = 9;

// Sequential always block for state assignment
always @ (posedge clk or negedge reset)

if (!reset) state <= IDLE;
else state <= next;

L6: 6.111 Spring 2009 27Introductory Digital Systems Laboratory

Verilog for Mealy FSM

always @ (state or N or D or Q) begin

DC = 0; DN = 0; DD = 0; // defaults

case (state)
IDLE: if (Q) next = GOT_25c;

else if (D) next = GOT_10c;
else if (N) next = GOT_5c;
else next = IDLE;

GOT_5c: if (Q) begin
DC = 1; next = IDLE;

end
else if (D) next = GOT_15c;
else if (N) next = GOT_10c;
else next = GOT_5c;

GOT_10c: if (Q) begin
DC = 1; next = RETURN_5c;

end
else if (D) next = GOT_20c;
else if (N) next = GOT_15c;
else next = GOT_10c;

GOT_15c: if (Q) begin
DC = 1; next = RETURN_10c;

end
else if (D) next = GOT_25c;
else if (N) next = GOT_20c;
else next = GOT_15c;

GOT_20c: if (Q) begin
DC = 1; next = RETURN_15c;

end
else if (D) begin

DC = 1; next = IDLE;
end

else if (N) next = GOT_25c;
else next = GOT_20c;

GOT_25c: if (Q) begin
DC = 1; next = RETURN_20c;

end
else if (D) begin

DC = 1; next = RETURN_5c;
end

else if (N) begin
DC = 1; next = IDLE;

end
else next = GOT_25c;

RETURN_20c: begin
DD = 1; next = RETURN_10c;

end
RETURN_15c: begin

DD = 1; next = RETURN_5c;
end

RETURN_10c: begin
DD = 1; next = IDLE;

end
RETURN_5c: begin

DN = 1; next = IDLE;
end

default: next = IDLE;
endcase

end

endmodule

For state GOT_5c, output DC
is only asserted if Q=1

L6: 6.111 Spring 2009 28Introductory Digital Systems Laboratory

Simulation of Mealy Vender

got5cidle
got15c

got20c
rtn15

rtn5 idle

5¢10¢

State

Output

(note: outputs should be registered)

L6: 6.111 Spring 2009 29Introductory Digital Systems Laboratory

Delay Estimation : Simple RC Networks

Vout

Ron

VDD

(b) High-to-low

CL

Vout

Ron

VDD

(a) Low-to-high

CL

vout

vin C

R

tp = ln (2) τ = 0.69 RC

review

Vin Vout

CL

VDD

L6: 6.111 Spring 2009 30Introductory Digital Systems Laboratory

Clocks are Not Perfect: Clock Skew

D

Clk

QIn Combinational
Logic

D

ClkD

Q

Wire delay

CLK

CLKD

δ>0

CLout

Tcq + Tlogic + Tsu - δT >

Tcq,cd + Tlogic,cd > Thold + δ

L6: 6.111 Spring 2009 31Introductory Digital Systems Laboratory

Positive and Negative Skew

Receiving edge arrives before the launching edge

Launching edge arrives before the receiving edge

Adapted from J. Rabaey, A. Chandrakasan, B. Nikolic, “Digital Integrated Circuits: A Design Perspective”
Copyright 2003 Prentice Hall/Pearson.

L6: 6.111 Spring 2009 32Introductory Digital Systems Laboratory

Clocks are Not Perfect: Clock Jitter

L6: 6.111 Spring 2009 33Introductory Digital Systems Laboratory

Summary

Synchronize all asynchronous inputs
Use two back to back registers

Two types of Finite State Machines introduced
Moore – outputs are a function of current state
Mealy – outputs a function of current state and input

A standard template can be used for coding FSMs
Register outputs of combinational logic for critical
control signals
Clock skew and jitter are important considerations

	L6: FSMs and Synchronization
	Asynchronous Inputs in Sequential Systems
	Asynchronous Inputs in Sequential Systems
	Handling Metastability
	Finite State Machines
	Review: FSM Timing Requirements
	Two Types of FSMs
	Design Example: Level-to-Pulse
	State Transition Diagrams
	Logic Derivation for a Moore FSM
	Moore Level-to-Pulse Converter
	Design of a Mealy Level-to-Pulse
	Mealy Level-to-Pulse Converter
	Moore/Mealy Trade-Offs
	The 6.111 Vending Machine
	What States are in the System?
	A Moore Vender
	State Reduction
	Verilog for the Moore Vender
	Verilog for the Moore Vender
	Simulation of Moore Vender
	Coding Alternative: Two Blocks
	FSM Output Glitching
	Registered FSM Outputs are Glitch-Free
	Mealy Vender (covered in Recitation)
	Verilog for Mealy FSM
	Verilog for Mealy FSM
	Simulation of Mealy Vender
	Delay Estimation : Simple RC Networks
	Clocks are Not Perfect: Clock Skew
	Positive and Negative Skew
	Clocks are Not Perfect: Clock Jitter
	Summary

