The PIC16F627A/628A/648A parts you have received conform functionally to the Device Data Sheet (DS40044E), except for the anomalies described below.

Microchip intends to address all issues listed here in future revisions of the PIC16F627A/628A/648A silicon. Where noted, issues apply to listed revision only.

1. Module: Programming Operations

   • The data EEPROM memory cannot be accessed when programming in LVP mode.
   • The Flash program memory and the Configuration bits can be accessed properly in LVP mode.

2. PIC16F627A/628A silicon Rev. A3 and A4. Flash program memory can only be programmed with a VDD of 4.5V-5.5V.

   • The Flash program memory is able to be programmed with a VDD of 2.0V-5.5V.
   • For code protection security, the Flash program memory can only be erased using the Bulk Erase command. The Bulk Erase function of all current and future revisions of the PIC16F627A/628A/648A requires a VDD of 4.5V-5.5V.

2. Module: EC Clock

   When using the EC OSC mode at frequencies >4 MHz and temperatures >85°C, the part may execute incorrectly from the program memory, causing malfunction.
   This problem only affects E-temp parts. Industrial grade parts are unaffected. HS mode should be used for frequencies >4 MHz at extended temps. All other clock modes work to their specified ranges.

   Note: This problem is corrected in PIC16F648A Rev. A3. (Date code 0420XXX and later).

   Unexpected program execution may occur when waking from Sleep.
   Work around
   Use HS Clock mode.

   Note: This problem is corrected in PIC16F648A Rev. A3 and PIC16F627A/628A Rev. A6. (Date code 0420XXX and later).
3. Module: Data EEPROM Memory


   **Note:** This problem is corrected in PIC16F648A Rev. A5 and PIC16F627A/628A Rev. A8.

Unexpected program execution may occur during data EEPROM write cycles.

**Work around**

Execute a `SLEEP` instruction immediately after setting the EECON1 WR bit and allow the EEIF to wake the processor from Sleep. This requires the PEIE bit of the INTCON register and the EEIE bit of the PIE1 register to be set. All other interrupt enables must be cleared so that only the EE write completion will wake the processor.

**Note:** Most peripherals suspend operation during Sleep. Other precautions may be necessary to ensure all peripheral operations are complete or in a safe halted mode before beginning an EEPROM write.

The following example assumes that the desired address is present in the EEADR register and the desired data to be written is in the EEDATA register:

**EXAMPLE 1:** DATA EEPROM WRITE CODE EXAMPLE

```assembly
BANKSEL 0x00 ;select Bank0
BCF PIR1, EEIF ;ensure write complete ;flag is clear
BANKSEL 0x80 ;change to Bank1
MOVLW 1 << PEIE ;enable only ;peripheral interrupt
MOVWF INTCON ;
MOVLW 1 << EEIE ;enable only EE write ;complete interrupt
MOVWF PIE1 ;
BSF EECON1, WREN ;enable EE write
MOVLW 0x55 ;required write ;protect sequence
MOVWF EECON2 ;
MOVLW 0xAA ;second part of ;sequence
MOVWF EECON2 ;
BSF EECON1, WR ;initiate write
SLEEP ;suspend operation ;during write
BCF EECON1, WREN ;disable EE write ;program execution ;resumes with this ;instruction upon EE ;write completion
```

2. The EEIF flag may be cleared inadvertently when performing operations on the PIR1 register simultaneously with the completion of an EEPROM write. This condition occurs when the EEPROM write timer completes at the same moment that the PIR1 register operation is executed. Register operations are those that have the PIR1 register as the destination and include, but are not limited to, BSF, BCF, ANDWF, IORWF and XORWF.

**Work around**

- Avoid operations on the PIR1 register when writing to the EEPROM memory.
- Poll the WR bit (EECON1<1>) to determine when the write is complete.
- Use a timer interrupt to catch any instances when the EEIF flag is inadvertently cleared. The timer interrupt should be set longer than 8 ms. If EEIF fails, then the timer interrupt occurs as a default time out. The WR and WRERR flags are checked as part of the timer Interrupt Service Routine to verify the EEPROM write success.
- If periodic interrupts are occurring in addition to the EEIF interrupts, then use a secondary flag to sense write completion. The secondary flag is set whenever EEPROM writes are active. An EEPROM write completion is indicated when the secondary flag is set and the WR flag is clear.

Note: This problem is corrected in PIC16F648A Rev. A5 and PIC16F627A/628A Rev. A8.

Note: Most peripherals suspend operation during Sleep. Other precautions may be necessary to ensure all peripheral operations are complete or in a safe halted mode before beginning an EEPROM write.
4. Module: USART Control

1. USART control of the RB1/RX/DT and RB2/TX/CK differs from the data sheet. Figure 5-9 and Figure 5-10 indicate that the USART circuit overrides the output drivers via the Peripheral OE signal. In fact, the Peripheral OE signal forces the TRISB<2:1> to an output (Reset) state (see Figure 1). Subsequently, the TRISB<2:1> must be set or configured to receive data.

**Work around**

In Asynchronous mode, when transmit is enabled (TXEN = 1 and SPEN = 1), the TRISB<2> latch is cleared to ‘0’ by the USART peripheral circuitry. When disabling transmit (TXEN = 0), the TRISB<2> bit should be set to ‘1’ to configure the RB2/TX/CK pin as an input.

In Synchronous mode, when changing from transmit to receive, clear the TXEN bit first, then set TRISB<1> to ‘1’ to configure the RB1/RX/DT pin as an input before setting SREN or CREN to receive.

When disabling the USART (SPEN = 0), TRIS<2:1> should be reconfigured for input or output as required by the application.
Clarifications/Corrections to the Data Sheet:

In the Device Data Sheet (DS40044E), the following clarifications and corrections should be noted.

1. **Module: In-Circuit Serial Programming™**

   Section 14.11: In-Circuit Serial Programming and Figure 14-18: Typical In-Circuit Serial Programming Connection. The following paragraph and Note box are being added to the end of Section 14.11 and Figure 14-18 is updated to include PGM, noted in bold.

   **14.11 In-Circuit Serial Programming**

   If LVP is not being used for programming, but the LVP Configuration bit is set (or LVP feature is enabled), the PGM pin must not be allowed to toggle while programming. The PGM pin is edge sensitive and if an edge is detected during programming, it may cause the PC to reset. If the LVP feature is disabled, the PGM pin will have no effect on programming.

   **Note:** The LVP feature is enabled by default when the LVP Configuration bit is set.

---

**FIGURE 14-18:** TYPICAL IN-CIRCUIT SERIAL PROGRAMMING™ CONNECTION

Note 1: Do not allow the PGM pin to toggle while programming.
APPENDIX A: REVISION HISTORY

Rev. A Document (2/12/03)
First revision of this document.

Rev. B Document (3/26/03)
Added 4.5V-5.5V VDD programming requirement on Rev. A2, A3 & A4 silicon.

Rev. C Document (5/13/03)
Added Item 1 to Clarifications/Corrections Section; Instruction Set, Example 1: (SUBWF).

Rev. D Document (7/10/03)
Revised document title.


Item 2: Added correction to 28-Pin QFN package, Pin 1.

Rev. E Document (8/15/03)
PIC16F648A Silicon revision A1”.

Added Module 3: Data EEPROM Memory, Item 1.
Clarifications/Corrections to the Data Sheet: Added Module 4: I/O Ports, Module 5: Timer1 and Module 6: Data EEPROM Memory.

Rev. F Document (9/03/03)
Clarifications/Corrections to the Data Sheet: Module 2: Timing Diagrams and Specifications, added Item 2, corrections to Section 17.2, parameter D020.

Rev. G Document (12/12/03)
Revise second paragraph, first page. Module 3, Item 1: Add note. Clarifications/Corrections to the Data Sheet: Module 2: Corrections to Item 2 and Table 17.2. Module 2: Added item 3 and corrections to Table 17.2 and 17.3. Module 4: Add Figure 5-4 from Data Sheet. Module 6: Corrections to Example 13-4.

Rev. H Document (01/15/04)
Module 1: Update to Item 2, added Item 3. Module 2: Add note to Items 1 and 2. Clarifications/Corrections to the Data Sheet: Added Module 7: Correction to Table 17-6. Corrected Table and Figure numbers in Section 17.0. Added Module 8: Correction to Sections 6.2.1 and 7.3.1, Table references.

Rev. J Document (06/02/04)
Revised note, Module 2: EC Clock; Items 1 and 2.
Revised note, Module 3: Data EEPROM Memory;
Item 1. Clarifications/Corrections to the Data Sheet;
Data Sheet Module 2: Timing Diagrams and specifications; parameters D033 and D043 updated to Rev. B of data sheet.


Clarifications/Corrections to the Data Sheet: Removed all modules. The data sheet has been updated.

Clarifications/Corrections to the Data Sheet: Added Module 1: In-Circuit Serial Programming.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks
The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, KEELOQ logo, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
AmpLab, FilterLab, Linear Active Thermistor, Migratable Memory, MXDEV, MXLAB, PS logo, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.
Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICWorks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.
All other trademarks mentioned herein are property of their respective companies.
© 2007, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.
Printed on recycled paper.

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona, Gresham, Oregon and Mountain View, California. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.