
Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science

FreeSoC 8051 Board User’s Manual

__

This manual will help you get started using your FreeSoC as an 8051 emulator with neat new

Special Function Registers. It will also detail the FreeSoC’s use as a PSoC-based microcontroller

for other projects.

How can we use the FreeSoC?

Mode 1: The FreeSoC is 40-pin DIP compatible microcontroller breakout with USB

programming capability. The FreeSoC uses Cypress’ powerful PSoC 5 chip. The PSoC, unlike

other modern system-on-chips, contains not only a microcontroller and programmable and highly

configurable digital blocks, but programmable analog blocks as well. This chip, along with its

intuitive IDE PSoC Creator, makes changing designs and configuring hardware much easier for

students and designers.

Mode 2: The board can be programmed (via USB from PSoC Creator) with an 8051 emulator

project with special modifications. It can be used as an exact substitute for the Intel 8051 and can

be programmed with 8051 assembly code from external memory or via USB using a batch file as

detailed below.

What’s New?

The FreeSoC 8051 emulators come in two flavors:

1. PWM: 8051 with 6 PWM generators (for power electronics applications)

2. SIG: 8051 with 2 ADCs, 2 DACs and 1 PWM generator (for signal processing

applications)

Pick the new functionalities you would like to add to your 8051 and program your FreeSoC with

the associated project found on the course website. To do so, use PSoC Creator (see website for

further documentation).

Assembling your code

You may use an 8051 assembler of your choice. The FreeSoC takes the generated Intel Hex

(.hex) file.

Loading your code onto the FreeSoC board

Once you have assembled your PWM code, you will need to load it into the PSoC on-chip flash.

To do this, run the batch file “load51” with your Intel Hex file. You will see the contents of your

Intel Hex file print to your Window’s terminal if successfully loaded.

Figure 1 Left: This is an .asm file. Right: The assembled Intel Hex file of the .asm file on the left.

 Bottom: Loading the code into FreeSoC flash with “load51.”

SECTION 1: PWM 8051 Emulator

Creating PWM waveforms

1. Two complementary PWM waves with configurable period, duty cycle and delay

The PSoC uses configurable digital blocks to create a variety of digital functions. This emulated

8051 microcontroller uses a PSoC PWM generator in its special PWM configuration. We can

write to specific registers in the PSoC to change the period, duty cycle and delays of our two

180° phase-shifted square waves.

The comments on the right detail the contents of each of these special registers.

;==
; PWM TEMPLATE
;
; This is an template for creating two opposite PWM waves with
; variable frequency, duty cycle and delay. It is written in
; 8051 assembly code for use on the enhanced 8051 FreeSoC
; designed for this class.
;===

;**
; EDIT THESE CONSTANTS

P equ 65535 ; Set period. Max = 65535 (5.2ms, 190 Hz)
D equ 32222 ; Set duty cycle period. For 50%, D = P/2
K equ 5 ; Set # cycle of delay (2-256 cycles of 0.1us)
W equ 0 ; Set time for phase difference delay (us)

;**

ljmp MAIN
org 0030h
MAIN:
 mov dptr, #P ; Store period in 16-bit register "dptr"
 mov 9Bh, dph ; Store high byte in register 0x9B
 mov 9Ch, dpl ; Store low byte in register 0x9C

 mov dptr, #D ; Store duty cycle period in dptr
 mov 9Dh, dph ; Store high byte in register 0x9D
 mov 9Eh, dpl ; Store low byte in register 0x9E

 mov 9Fh, #K ; Store delay in register 0x9F

 mov dptr, #W ; Store phase difference in dptr
 mov 0A2h, dph ; Store high byte in register 0xA2
 mov 0A3h, dpl ; Store low byte in register 0xA3

 setb 0C0h ; This enables the PWM source

 loop: sjmp loop

Figure 2 This template may be changed to create the delay and inverted delay signals as inputs to the FET

drivers of a totem circuit.

We can use P, D and K to recreate the DELAY and DELAY we have been using a combination

of ICs to create! Just set the frequency, duty cycle and delay amounts that you need.

2. H-bridge waveforms with adjustable phase difference

Now we want to make an inverter to convert some DC voltage to an AC waveform. We might

want to make one with the control waveforms offset by 180°, or by some other phase shift.

We can add the W parameter to introduce a phase delay in microseconds for the second and third

PWM sources. The phase delay between the first and second and second and third sources will

be the same.

3. 3-phase inverter waveforms with adjustable phase difference

We can also make a 3-phase inverter for induction machine drives. PWM waveforms with phase

delays of 180° and 120° or arbitrary phase delays can be constructed using the above form.

Using the example from the class handout, we can create these waveforms with the parameters

below:

frequency = 40kHz

duty cycle = 0.5

deadtime = 0ns

phase delay = 120°

;**
; EDIT THESE CONSTANTS

P equ 250 ; Set period. Max = 65535 (5.2ms, 190 Hz)
D equ 125 ; Set duty cycle period. For 50%, D = P/2
K equ 5 ; Set # cycle of delay (2-256 cycles of 0.1us)
W equ 4 ; Set time for phase difference delay (us)

;**

Using the board

Below is a pinout of the standard 8051 microcontroller. Also shown is the standard memory map

of the 8051 with extended PWM FreeSoC memory map (Tables 1 and 2).

The FreeSoC firmware is hardcoded to use Port 2 as its PWM output port. Pins P2.0 – P2.5 will

output your (up to) 3 independent PWM waves with adjustable deadtime, with P2.0, P2.2 and

P2.4 being your first, second and third sources respectively and P2.1, P2.3 and P2.5 being their

complements.

This document is meant to serve as a supplement to

the Intel MCS® 51 Microcontroller Family User’s

Manual. The FreeSoC was designed to be an 8051

emulator with almost all of Intel’s original

specifications. This document details the operation

of the new PWM Special Function Registers, but

should be used in conjunction with the Intel manual

if true 8051 functionality is desired.

Once your FreeSoC code has been assembled and

you have loaded it onto the board via the USB, you

may either use the 3.3V from the USB to continue to

power the board, or power it externally with 5V on

VCC.

WARNING: DO NOT POWER THE BOARD

WITH MORE THAN +5V. These boards are

expensive and cannot handle a supply voltage higher

than 5V. See Appendix A for a schematic of the

FreeSoC board.

P
W

M
 p

o
rt

s

FreeSoC PWM Memory Map

Table 1 PWM modified SFR space for FreeSoC with added SFRs in bold

PWMPH, PWMPL are high and low bytes of PWM phase delay register

PWMDH, PWMDL are high and low bytes of PWM duty cycle register

PWMK is PWM dead-time register

PWMFH, PWMFL are high and low bytes of PWM period (frequency) register

Differences between Intel 8051 and FreeSoC

 8052-specific hardware (Timer 2, etc) is not implemented.

 The FreeSoC can run much faster when it is not constantly reading program code from

external ROM. Therefore, if external ROM is used (as in the R31JP) the FreeSoC will

read the contents of this ROM into its 32K reserved 8051 program space.

o When the R31JP is used, the FreeSoC will grab the 32K of code in whichever

external memory is at address 0x0000.

 If external RAM is not used, the FreeSoC will use its 8K of reserved 8051 RAM space to

be accessed with MOVX commands.

 Timer 0 and Timer 1 modes 0 (13-bit mode) and mode 3 (Timer 0: TL0 and TH0 8-bit

counter mode) are not implemented.

 P3.3 (INT1) and P3.5 (T1) have been taken for use as the ADC input and DAC output

respectively.

F8h FFh

F0h B F7h

E8h EFh

E0h ACC E7h

D8h DFh

D0h PSW D7h

C8h CFh

C0h ENP C7h

B8h IP BFh

B0h P3 B7h

A8h IE AFh

A0h P2

 A7h

98h SCON SBUF

9Fh

90h P1 PWMPH PWMPL PWMFH PWMFL PWMDH PWMDL PWMK 97h

88h TCON TMOD TL0 TL1 TH0 TH1 8Fh

80h P0 SP DPL DPH PCON 87h

Table 2 Memory map for standard 8051 (taken from 6.115 Lecture 1)

More on the R31JP

In normal R31JP operation

either the external ROM or

RAM, accessed by PSEN and

RD control signals

respectively, can be read from

using the combined READ

signal (OR for active low

signals).

Addresses in the 0x0000-

0x7FFF range will access the

external RAM in “RUN” mode

and ROM in “MON” mode.

Using the 0xFE00-0xFEFF

range will select memory-

mapped IO devices via XIO.

Figure 3 R31JP operation

Appendix A. Board Schematic

Appendix B. Board Layout and Photo

