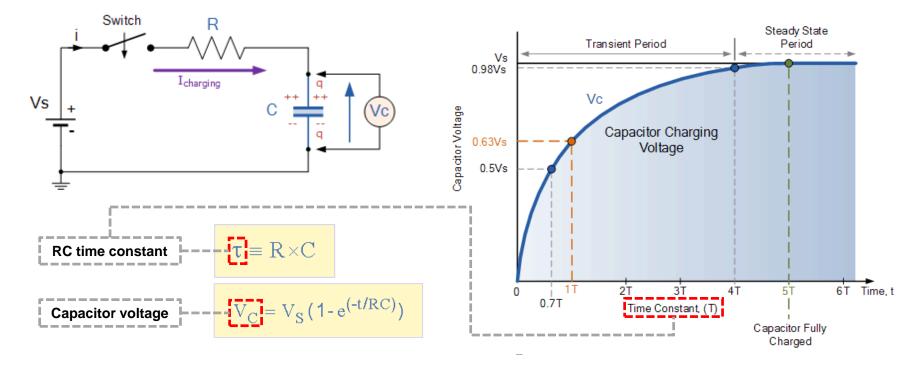
Lecture 2

Intermediate circuit theory, nonlinear components

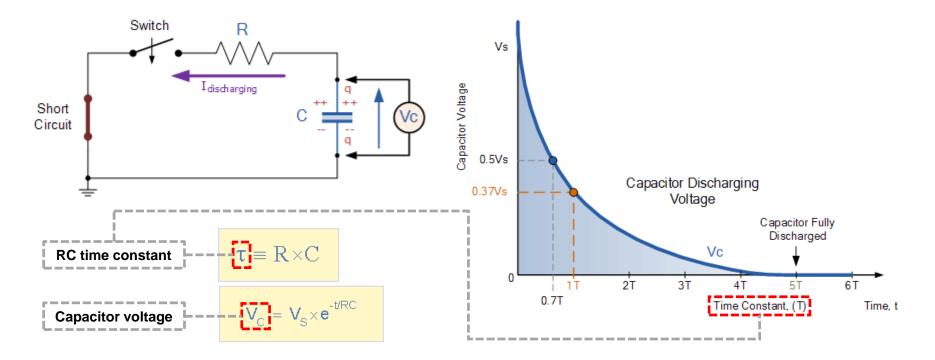
Graphics used with permission from AspenCore (<u>http://electronics-tutorials.ws</u>)

Agenda

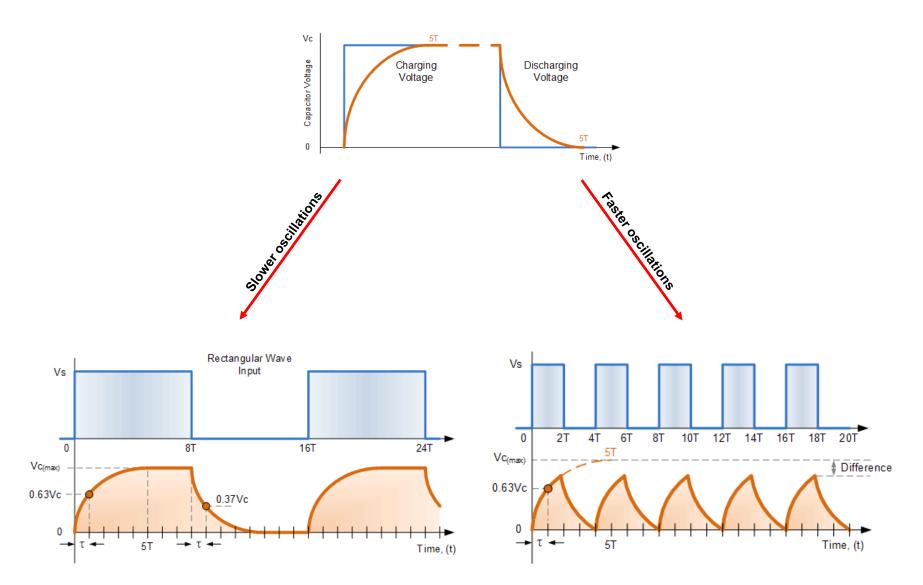

- 1. Lab 1 review: RC circuits
- 2. Nonlinear components: diodes, BJTs and MOSFETs
- 3. Operational amplifiers (op-amps)
- 4. Audio amplification
- 5. Lab 2 overview: components and specifications

Lab 1 review

Resistor-capacitor (RC) circuits


RC charging response

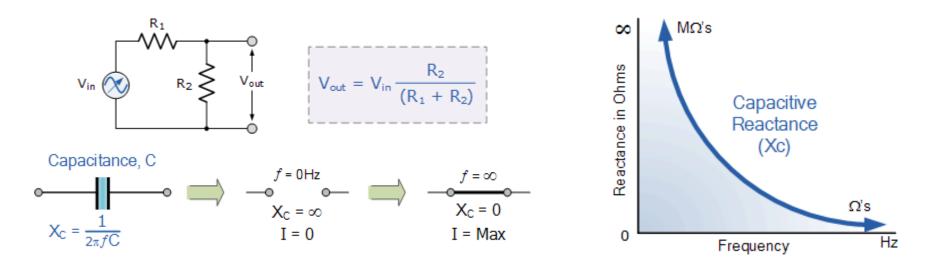
- Capacitor voltage V_c grows exponentially close to V_s
- Rate of exponential growth defined by resistor value (smaller resistor = faster charging)



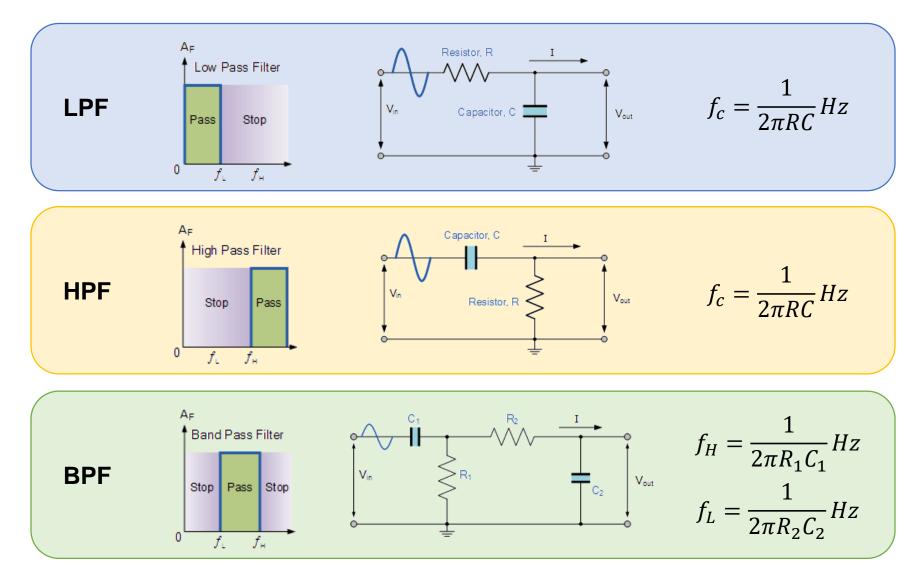
RC discharging response

- Capacitor voltage V_c decays **exponentially** to 0
- Rate of exponential decay defined by resistor value (smaller resistor = faster discharging)

RC transient response



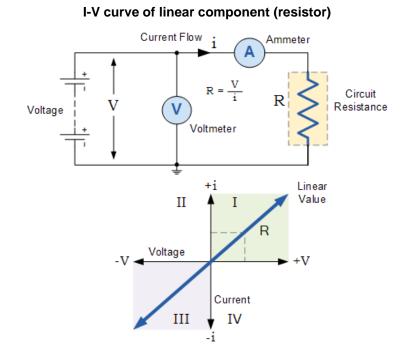
RC Time constant tables

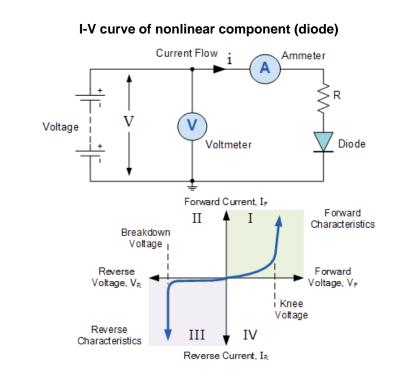

Charging			Discharging				
Time Constant	Percentage of applied voltage		Time Constant	Percentage of applied voltage			
0.5	39.3%		0.5	60.7%			
0.7	50.3%		0.7	49.7%			
1	63.2%		1	36.8%			
2	86.5%		2	13.5%			
3	95.0%		3	5.0%			
4	98.2%		4	1.8%			
5	99.3%		5	0.7%			

Filtering

- Filter: Circuit whose response depends on the frequency of the input
- **Reactance:** "Effective resistance" of a capacitor, varies inversely with frequency
- Can construct a voltage divider using a capacitor as a "resistor" to exploit this property

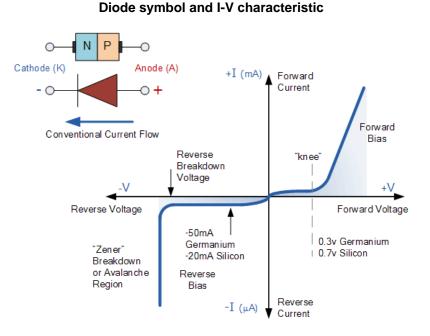
Types of filters

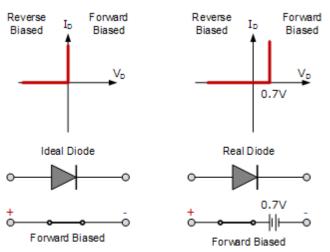



Nonlinear components

Diodes, BJTs and MOSFETs

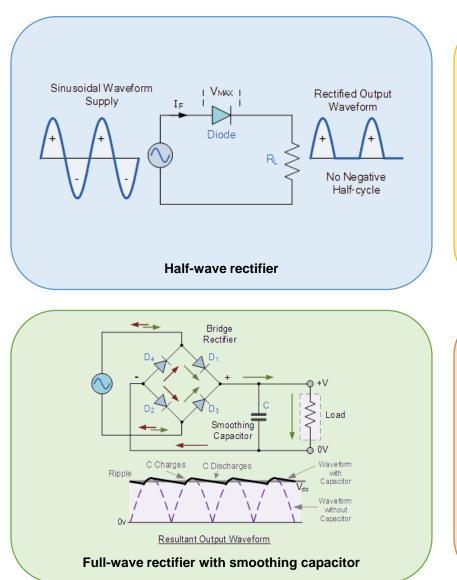
Linear vs. nonlinear components

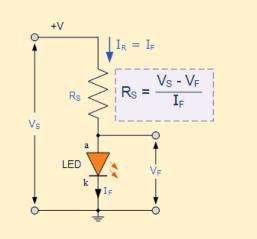

- I-V curve: Relates current through a device to voltage across the device
- Nonlinear components have nonlinear I-V curves



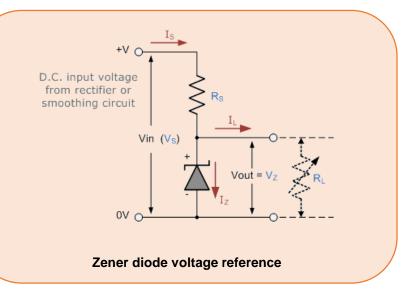
Diodes

- Diode: only allows current to flow one way
- Can be modeled by a switch in series with a voltage source
- Important to ensure proper polarity when prototyping

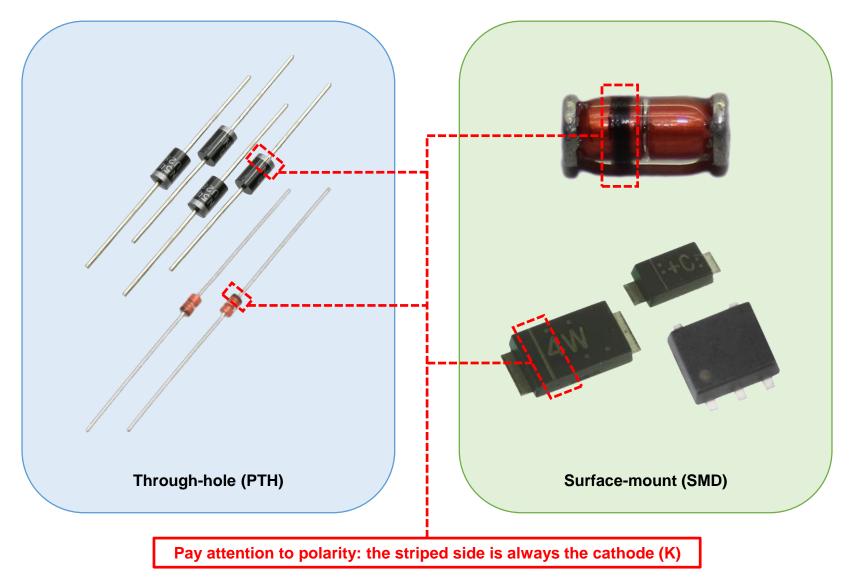

Reverse Biased


Ideal vs. real diode characteristics

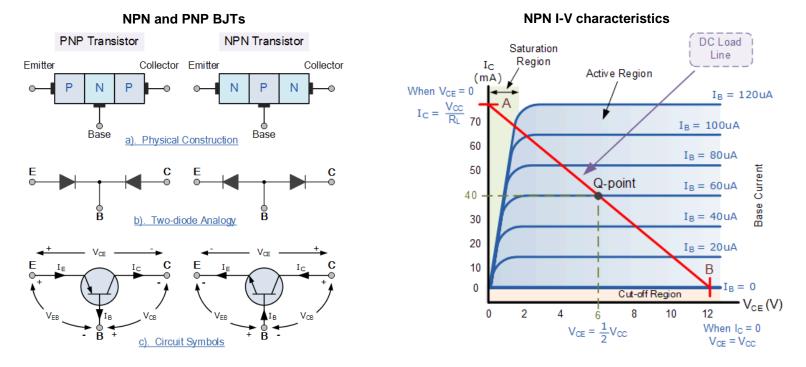
0.7V


Reverse Biased

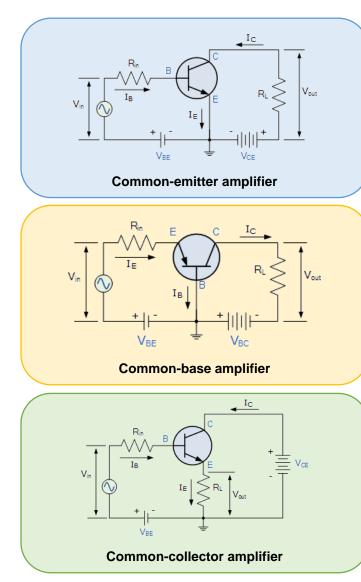
Example diode circuits



Light-emitting diode (LED) with current-limiting resistor

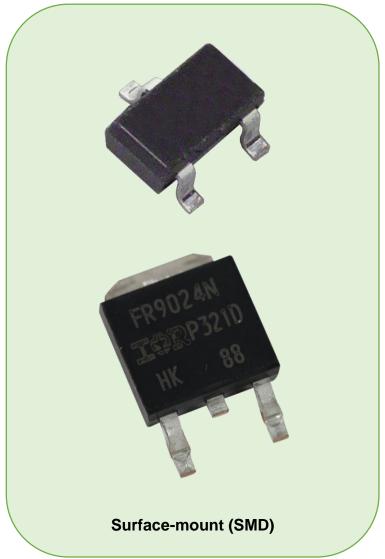


Diodes

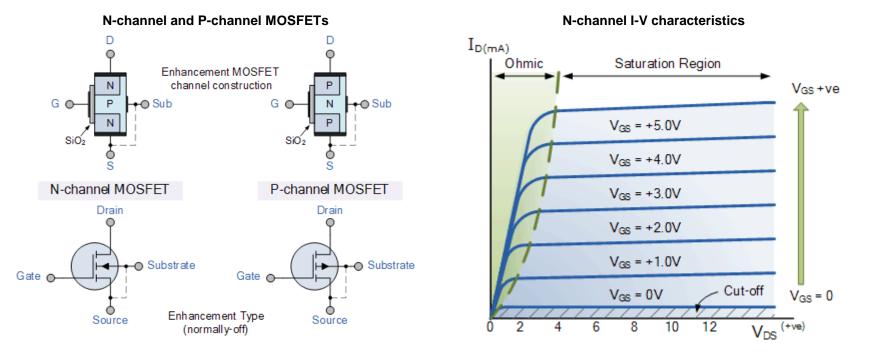


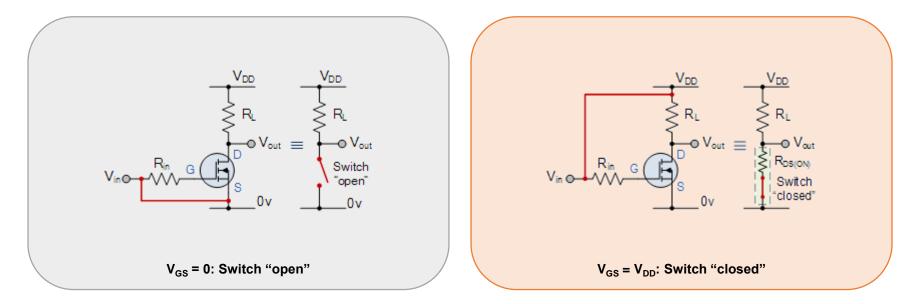
BJTs

- BJT (bipolar junction transistor): Current-driven amplifier
- Two types: NPN and PNP
- Base controls current from emitter to collector


BJT amplifier circuits

Characteristic	Common Base	Common Emitter	Common Collector
Input Impedance	Low	Medium	High
Output Impedance	Very High	High	Low
Phase Shift	0°	180°	0°
Voltage Gain	High	Medium	Low
Current Gain	Low	Medium	High
Power Gain	Low	Very High	Medium


BJTs

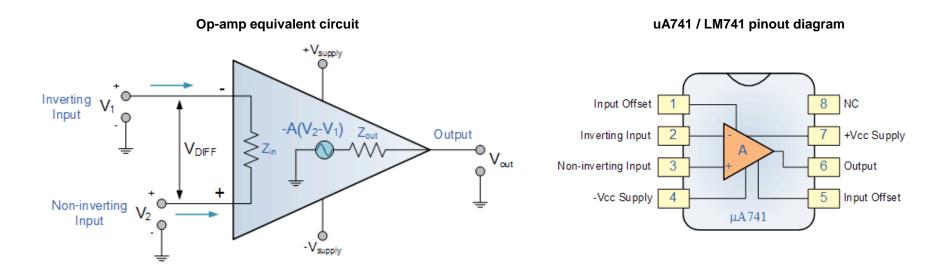

MOSFETs

- MOSFET: Metal-oxide-semiconductor field effect transistor
- Typically used as a voltage-controlled switch
- Gate controls current from drain to source


MOSFET as a switch

- Drain-source junction conducts when gate voltage (V_{GS}) exceeds the threshold voltage (V_T)
- N-channel MOSFETS are **low-side** switches
- P-channel MOSFETS are high-side switches

MOSFETs

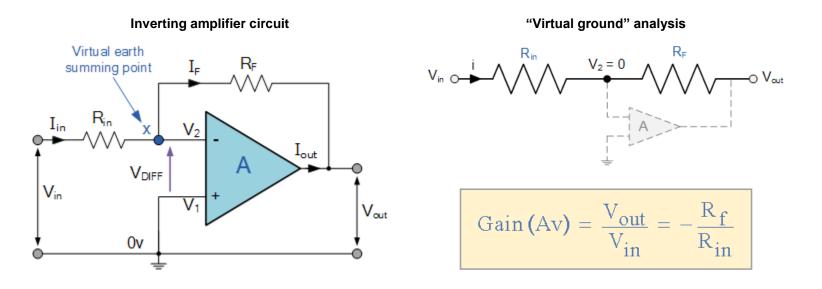


Operational amplifiers (op-amps)

Operational amplifiers

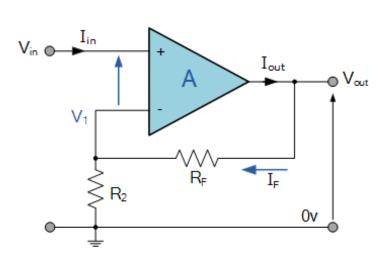
- Operational amplifier (op-amp): Amplifies the difference between two voltages
- "Operational": can be used for arithmetic operations (addition, subtraction, multiplication by a constant)
- Many common circuits can be enhanced with op-amps

Ideal op-amp properties

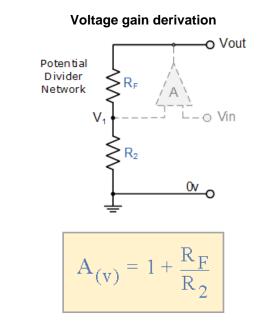

Two "golden rules"¹ of op-amps:

- 1. In a **closed loop** the output attempts to do whatever is necessary to make the voltage difference between the inputs zero.
- 2. The inputs draw no current.

¹ Horowitz, Paul; Hill, Winfield (1989). The Art of Electronics.

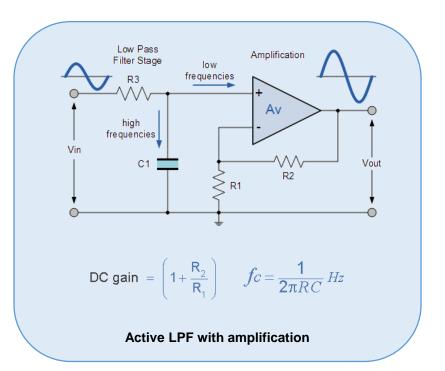

Inverting amplifier

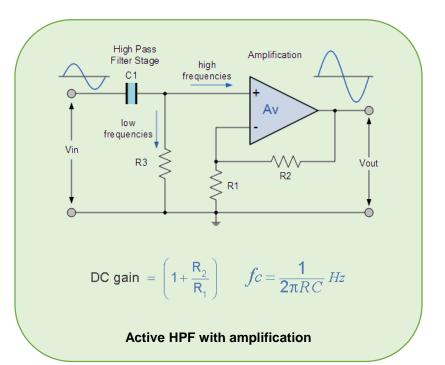
- Inverting amplifier: Multiplies input by a negative constant (A_V)
- To solve for voltage gain, assume the output forces the difference $(V_1 V_2)$ to 0



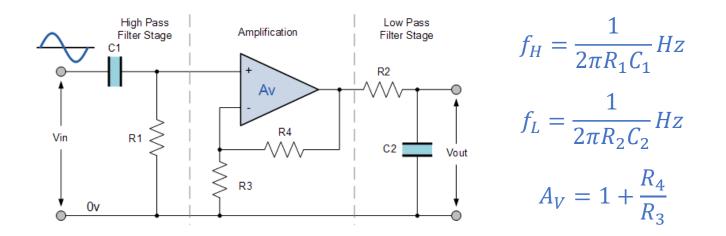
Non-inverting amplifier

- Non-inverting amplifier: Multiplies input by a positive constant (A_V)
- Voltage gain can be derived from "golden rules" and resistor divider formula



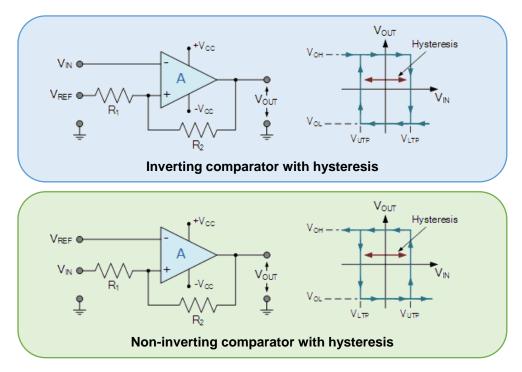

Non-inverting amplifier circuit

Op-amp LPF and HPF


- Same function as passive LPF and HPF
- Adds amplification, which is useful for small or highimpedance inputs

Op-amp BPF

- Same function as passive BPF
- Adds amplification, which is useful for small or highimpedance inputs
- Adds **isolation** between HPF and LPF stage


Comparator

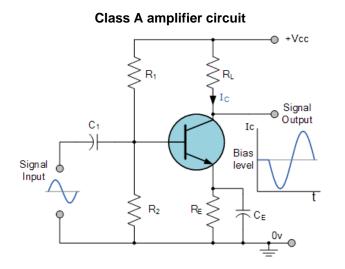
- Comparator: Compares input voltage (V_{IN}) with reference voltage (V_{REF})
- Exploits "infinite" gain to produce binary output
- Most op-amps cannot operate rail-to-rail

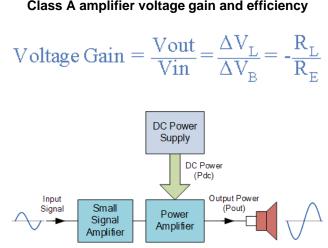
Comparator with hysteresis

- Hysteresis: Removes noise from comparator output
- Creates upper and lower "trip points" (V_{UTP} and V_{LTP})
- Amount of hysteresis determined by R₁ and R₂

$$\beta = \frac{R_1}{R_1 + R_2}$$

$$V_{HYSTERESIS} = V_{UTP} - V_{LTP}$$

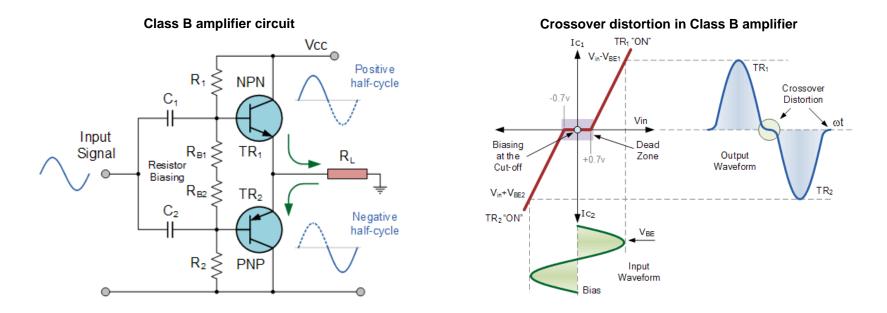

$$V_{HYSTERESIS} = +\beta Vcc - (-\beta Vcc)$$

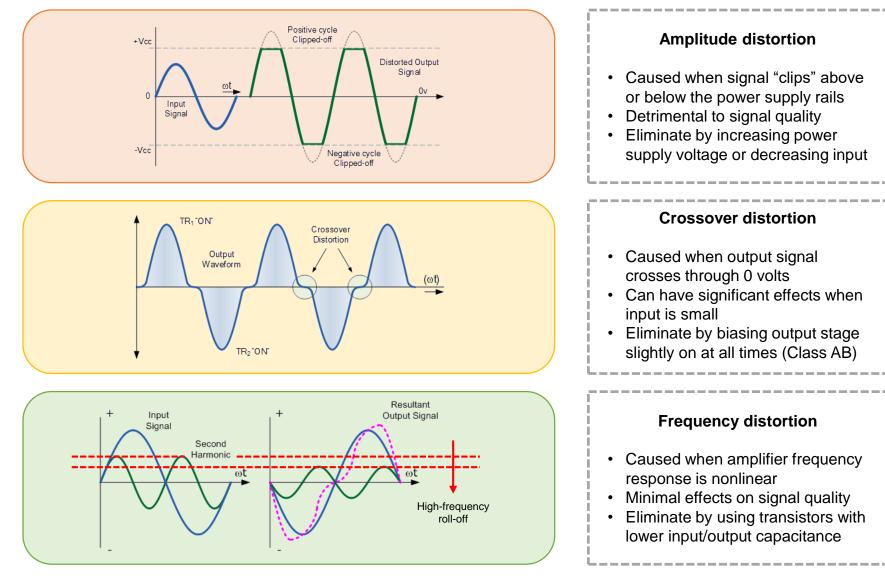

$$\therefore V_{HYSTERESIS} = 2\beta Vcc$$

Audio amplification

Class A amplifier

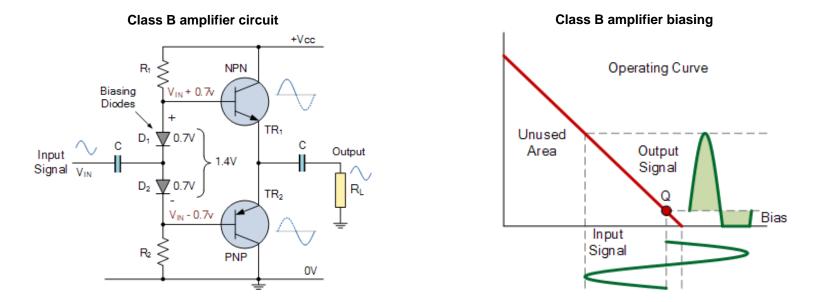
- Class A amplifier: Uses BJT to "pull down" output
- Value of load resistor (R₁) determines voltage gain
- Commonly used on input stage for high voltage gain
- Not ideal as a power amplifier due to low efficiency



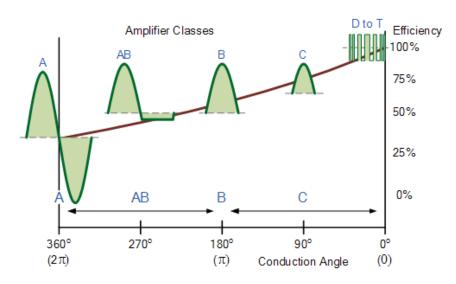

Class A amplifier voltage gain and efficiency

Class B amplifier

- Class B amplifier: Much more efficient than Class A
- Uses "push-pull" output: only one BJT on at a time
- Introduces crossover distortion in the output signal



Distortion


Class AB amplifier

- Same principle as Class B, but with added bias voltage
- Biasing diodes keep both output transistors on slightly after the input crosses 0 volts
- Result: minimal crossover distortion, less efficient

Summary of amplifier classes

- Class A: High quality, low efficiency
- Class B: Low quality, high efficiency
- Class AB: High quality, average efficiency

Conduction angle and efficiency comparison

Characteristic	Class A	Class B	Class AB
Signal quality	High	Low	High
Efficiency	Low	High	Medium
Conduction angle	360°	180°	180° – 360°
Output impedance	High	Medium	Low

Summary of characteristics

Lab 2 overview

Components and specifications

Exercise 1: Op-amps

- Goal: Build and test basic op-amp circuits
- New parts: LM741 op-amp
- Power pins are hidden on schematic by convention but must be connected
- Be extremely careful not to switch positive and negative power supplies

LM741

Supply voltage: Most op-amps rated for dualsupply operation

Short circuit duration: Very tolerant of breadboard accidents

Input offset voltage: Should be low for highprecision applications

Input bias current: Higher for bipolar devices (LM741), lower for JFET devices (LF356)

Slew rate: Important if used in high-frequency circuits

6.1 Absolute Maximum Ratings

PARAMETER

Input offset voltage

Input offset voltage

adjustment range

nput offset currer

nput bias current

Input resistance

Input voltage range

arge signal voltage gair

Output short circuit current

Common-mode rejection ratio

Supply voltage rejection ratio

Rise time

Output voltage swing

Transient

response

Slew rate

Supply current

Power consumption

over operating free-air temperature range (unless otherwise noted)⁽¹⁾⁽²⁾⁽³⁾

R_S ≤ 10 kΩ

T_A = 25°C

T₄ = 25°C

kÕ

V_S = ±15 V

T_A = 25°C

 $T_A = 25^{\circ}C$

V_S = ±15 V

 $T_A = 25^{\circ}C, V_S = \pm 20 V$

 $T_{AMIN} \le T_A \le T_{AMA}$

 $T_{AMIN} \le T_A \le T_{AMAX}$

 $T_{AMIN} \le T_A \le T_{AMAX}$

 $T_A = 25^{\circ}C, V_S = \pm 20 V$

 $V_{\rm S} = \pm 15 \text{ V}, V_{\rm O} = \pm 10 \text{ V},$

ſ_A = 25°C, unity gair

T_A = 25°C, unity gair

 $R_S \le 10 \Omega$, $V_{CM} = \pm 12 V$, $T_{AMIN} \le T_A \le T_{AMAX}$

 $V_S = \pm 20 \text{ V to } V_S = \pm 5 \text{ V}, R_S \le 10 \Omega, T_{AMIN} \le T_A \le T_{AMAX}$

TEST CONDITIONS

R_L ≥ 2 T_A = 25°C

T_A = 25°C

 $T_{AMIN} \le T_A \le T_{AMA}$

 $T_{AMIN} \le T_A \le T_{AMAX}$

R_L ≥ 10 kΩ

R_L ≥ 2 kΩ

T_A = 25°C

 $T_A = T_{AMIN}$

T_A = T_{AMAX}

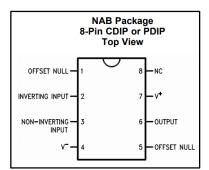
MIN

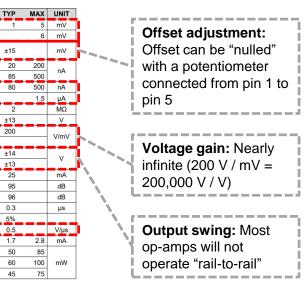
0.3

±12

50

25


±12


±10

80

86

5%

Exercise 2: LED driver

- Goal: use BJT and function generator to drive an LED
- New parts: 2N3904 BJT (NPN)
- Very important to check **orientation** of transistors

2N3904

"Absolute maximum" ratings: Values outside these ranges will cause permanent damage to the device

Maximum voltages:

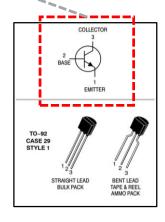
Limited by power supply (V_{CEO}, V_{CBO}) or input range (V_{EBO})

Maximum current: Limited by load impedance

Gain-bandwidth product: Defines maximum gain in an amplifier

Small-signal gain: Ratio of collector

current to base current


— — MAXIMUM RATINGS

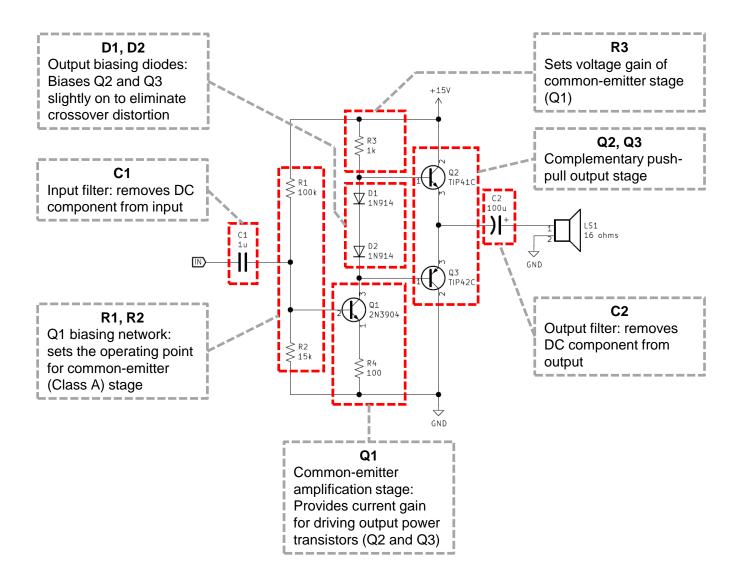
Rating	Symbol	Value	Unit
Collector – Emitter Voltage	V _{CEO}	40	Vdc
Collector - Base Voltage	V _{CBO}	60	Vdc
Emitter-Base Voltage	V _{EBO}	6.0	Vdc
Collector Current – Continuous	I _C	200	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	1.5 12	W mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

SMALL-SIGNAL CHARACTERISTICS

	Current–Gain – Bandwidth Product ($I_C = 10 \text{ mAdc}, V_{CE} = 20 \text{ Vdc}, f = 100 \text{ MHz}$)	2N3903 2N3904	fT	250 300	-	MHz
	Output Capacitance (V_{CB} = 5.0 Vdc, I_E = 0, f = 1.0 MHz)		C _{obo}	-	4.0	pF
	Input Capacitance (V_{EB} = 0.5 Vdc, I_C = 0, f = 1.0 MHz)		C _{ibo}	-	8.0	pF
	Input Impedance (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	2N3903 2N3904	h _{ie}	1.0 1.0	8.0 10	kΩ
	Voltage Feedback Ratio ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, f = 1.0 kHz)	2N3903 2N3904	h _{re}	0.1 0.5	5.0 8.0	X 10 ⁻⁴
-	Small–Signal Current Gain (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	2N3903 2N3904	h _{fe}	50 100	200 400	-
1	Output Admittance (I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)		h _{oe}	1.0	40	μmhos
	Noise Figure (I_C = 100 $\mu Adc, V_{CE}$ = 5.0 Vdc, R_S = 1.0 k Ω, f = 1.0 kHz)	2N3903 2N3904	NF		6.0 5.0	dB

Pin diagram: Pinning for 2N3904 is like "ABC" (actually EBC)

Source: https://www.onsemi.com/pub/Collateral/2N3903-D.PDF


Exercise 3: Audio amplifier

- Goal: Build a high-quality, high-efficiency audio amplifier
- New parts: TIP41, TIP42 complementary power BJTs
- Don't force large pins into breadboard, look at the holes and make sure the pins line up
- Make sure **output capacitor** is oriented correctly

TIP41, TIP42

	MAXIMUM RATINGS								
	Rating	Symbol	Value	Unit			~		
Collector-emitter voltage: Capable of switching high voltages	Collector-Emitter Voltage TIP41, TIP42 TIP41A, TIP42A TIP41B, TIP42B TIP41B, TIP42B TIP41C, TIP42C	V _{CEO}	40 60 80 100	Vdc				1	
Switching high voltages	Collector-Base Voltage TIP41, TIP42 TIP41A, TIP42A TIP44B, TIP42B TIP41C, TIP42C	V _{CB}	40 60 - 90	Vdc					
	Emitter-Base Voltage	VEB	5.0	Vdc				TO-22	
Packaging: Collector	Collector Current- Continuous Peak	I _C	6.0 10	Adc			/	CASE 2 STYL	
electrically connected	Base Current	I _В	2.0	Adc		12			
to case	Total Power Dissipation @ T _C = 25°C Derate above 25°C	PD	65 0.52	W ₩/°C		3			
and the second	Total Power Dissipation @ T _A = 25°C Derate above 25°C	PD	2.0 0.016	W W/°C			STYLE 1:		
Collector current:	Unclamped Inductive Load Energy (Note 1)	E	62.5	mJ				DLLECTOR	
Capable of driving	Operating and Storage Junction, Temperature Range	T _J , T _{stg}	-65 to +150	°C				MITTER DLLECTOR	
high-current loads									
5	ELECTRICAL CHARACTERISTICS	$T_c = 25^{\circ}C$	unless othe	enwise not	tod)				
	· · · · · · · · · · · · · · · · · · ·	-	uncoo ouro		(eu)				·1
/	Chara	cteristic	uncos our		ieu)	Symbol	Min	Max	Unit
	Chara OFF CHARACTERISTICS	cteristic	unices our					Мах	
Power dissipation:	Chara OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage (N	cteristic		1	TIP41, TIP42 41A, TIP42A	Symbol V _{CEO(sus)}	Min 40 60	Max - -	Unit Vdc
Power dissipation: Capable of dissipating	Chara OFF CHARACTERISTICS	cteristic		TIP TIP	TIP41, TIP42		40	Max - - -	
	Chara OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage (N (I _C = 30 mAdc, I _B = 0) Collector Cutoff Current	cteristic		TIP TIP TIP	TIP41, TIP42 41A, TIP42A 41B, TIP42B 41C, TIP42C		40 60 80	- - -	
Capable of dissipating	Chara OFF CHARACTERISTICS Collector-Emitter Sustaining Voltage (N (I _C = 30 mAdc, I _B = 0)	ote 2)	TIP41, T	TIP TIP TIP TIP	TIP41, TIP42 41A, TIP42A 41B, TIP42B	V _{CEO(sus)}	40 60 80	Max - - - 0.7 0.7	Vdc
Capable of dissipating much more power than	$\begin{tabular}{ c c c c } \hline Characle & Characle & Collector-Emitter Sustaining Voltage (N (I_C = 30 mAdc, I_B = 0) \\ \hline & Collector Cutoff Current (V_{CE} = 30 Vdc, I_B = 0) \\ (V_{CE} = 60 Vdc, I_B = 0) \\ Collector Cutoff Current \\ \hline \end{array}$	ote 2)	TIP41, T	TIP TIP TIP TIP 1P41A, TI 1P41C, TIP	TIP41, TIP42 41A, TIP42A 41B, TIP42B 41C, TIP42C P42, TIP42C P42, TIP42C	V _{CEO(sus)}	40 60 80 100	- - - 0.7 0.7	Vdc
Capable of dissipating much more power than small-signal devices	$\label{eq:constraint} \hline \begin{array}{c} \hline \mbox{Charac} \\ \hline \mbox{OFF CHARACTERISTICS} \\ \hline \mbox{Collector-Emitter Sustaining Voltage (N} \\ (I_C = 30 \mbox{ mAdc, }I_B = 0) \\ \hline \mbox{Collector Cutoff Current} \\ (V_{CE} = 30 \mbox{ Vdc, }I_B = 0) \\ (V_{CE} = 60 \mbox{ Vdc, }I_B = 0) \\ \hline \mbox{Collector Cutoff Current} \\ (V_{CE} = 40 \mbox{ Vdc, }V_{EB} = 0) \\ \hline \end{array}$	ote 2)	TIP41, T	TIP TIP TIP TIP4 1P41A, TI 41C, TIP4	TIP41, TIP42 41A, TIP42A 41B, TIP42B 41C, TIP42C P42, TIP42A 42B, TIP42A TIP41, TIP42	V _{CEO(sus)}	40 60 80 100	- - - 0.7	Vdc mAdc
Capable of dissipating much more power than small-signal devices	$\label{eq:constraint} \begin{array}{c} \mbox{Charac} \\ \hline \mbox{OFF CHARACTERISTICS} \\ \hline \mbox{Collector-Emitter Sustaining Voltage (N (I_C = 30 mAdc, I_B = 0) \\ (I_C = 30 mAdc, I_B = 0) \\ \hline \mbox{Collector Cutoff Current} \\ (V_{CE} = 30 Vdc, I_B = 0) \\ (V_{CE} = 60 Vdc, V_{EB} = 0) \\ (V_{CE} = 40 Vdc, V_{EB} = 0) \\ (V_{CE} = 80 Vdc, V_{EB} = 0) \\ (V_{CE} = 80 Vdc, V_{EB} = 0) \\ \end{array}$	ote 2)	TIP41, T	TIP TIP TIP 1P41A, TI 41C, TIP 41C, TIP	TIP41, TIP42 41A, TIP42A 41B, TIP42B 41C, TIP42C P42, TIP42C P42, TIP42A 42B, TIP42C TIP41, TIP42 41A, TIP42A 41B, TIP42B	V _{CEO(sus)}	40 60 80 100	- - - - - - - - - - - - - - - - - - -	Vdc mAdc
Capable of dissipating much more power than small-signal devices	$\label{eq:constraint} \begin{array}{ c c } \hline Characle \\ \hline \textbf{OFF CHARACTERISTICS} \\ \hline \hline Collector-Emitter Sustaining Voltage (N (I_C = 30 mAdc, I_B = 0) \\ \hline (V_{CE} = 30 mAdc, I_B = 0) \\ \hline (V_{CE} = 30 Vdc, I_B = 0) \\ \hline (V_{CE} = 60 Vdc, I_B = 0) \\ \hline (V_{CE} = 60 Vdc, V_{EB} = 0) \\ \hline (V_{CE} = 60 Vdc, V_{EB} = 0) \\ \hline (V_{CE} = 80 Vdc, V_{EB} = 0) \\ \hline (V_{CE} = 100 Vdc, V_{EB} = 0) \\ \hline (V_{CE} = 100 Vdc, V_{EB} = 0) \\ \hline \end{array}$	ote 2)	TIP41, T	TIP TIP TIP 1P41A, TI 41C, TIP 41C, TIP	TIP41, TIP42 41A, TIP42A 41B, TIP42A 41B, TIP42C 41C, TIP42C P42, TIP42A 42B, TIP42C TIP41, TIP42 41A, TIP42A	V _{CEO(sus)} I _{CEO} I _{CES}	40 60 80 100 - - - - - - -	- - - - - - - - - - - - - - - - - - -	Vdc mAdc µAdc
Capable of dissipating much more power than small-signal devices	$\label{eq:constraint} \begin{array}{ c c c } \hline Chara \\ \hline \textbf{OFF CHARACTERISTICS} \\ \hline Collector-Emitter Sustaining Voltage (N (I_C = 30 mAdc, I_B = 0) \\ \hline (V_{CE} = 30 vdc, I_B = 0) \\ \hline (V_{CE} = 60 Vdc, I_B = 0) \\ \hline (V_{CE} = 60 Vdc, V_{EB} = 0) \\ \hline (V_{CE} = 40 Vdc, V_{EB} = 0) \\ \hline (V_{CE} = 80 Vdc, V_{EB} = 0) \\ \hline (V_{CE} = 100 Vdc, V_{EB} = 0) \\ \hline (V_{CE} = 100 Vdc, V_{EB} = 0) \\ \hline \textbf{Emitter Cutoff Current } (V_{BE} = 5.0 Vdc, I_B \\ \hline \textbf{Collector Cutoff Current} \\ \hline Collector Cut$	ote 2)	TIP41, T	TIP TIP TIP 1P41A, TI 41C, TIP 41C, TIP	TIP41, TIP42 41A, TIP42A 41B, TIP42B 41C, TIP42C P42, TIP42C P42, TIP42A 42B, TIP42C TIP41, TIP42 41A, TIP42A 41B, TIP42B	V _{CEO(sus)}	40 60 80 100	- - - - - - - - - - - - - - - - - - -	Vdc mAdc
Capable of dissipating much more power than small-signal devices (2N3904)	$\label{eq:constraint} \begin{array}{ c c c } \hline Chara \\ \hline \textbf{OFF CHARACTERISTICS} \\ \hline \hline Collector-Emitter Sustaining Voltage (N (I_C = 30 mAdc, I_B = 0) \\ \hline (V_{CE} = 30 mAdc, I_B = 0) \\ \hline (V_{CE} = 30 Vdc, I_B = 0) \\ (V_{CE} = 60 Vdc, I_B = 0) \\ (V_{CE} = 60 Vdc, V_{EB} = 0) \\ (V_{CE} = 60 Vdc, V_{EB} = 0) \\ (V_{CE} = 80 Vdc, V_{EB} = 0) \\ (V_{CE} = 100 Vdc, V_{EB} = 0) \\ (V_{CE} = 100 Vdc, V_{EB} = 0) \\ \hline \textbf{Emitter Cutoff Current (V_{BE} = 5.0 Vdc, I_B) \\ \hline \textbf{ON CHARACTERISTICS (Note 2)} \\ \hline \end{array}$	cteristic ote 2) c = 0)	TIP41, T	TIP TIP TIP 1P41A, TI 41C, TIP 41C, TIP	TIP41, TIP42 41A, TIP42A 41B, TIP42B 41C, TIP42C P42, TIP42C P42, TIP42A 42B, TIP42C TIP41, TIP42 41A, TIP42A 41B, TIP42B	V _{CEO(sus)} I _{CEO} I _{CES} I _{EBO}	40 60 80 100 - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	Vdc mAdc µAdc
Capable of dissipating much more power than small-signal devices (2N3904) DC current gain: Much lower current	$\label{eq:constraint} \begin{array}{ c c c } \hline Chara \\ \hline \textbf{OFF CHARACTERISTICS} \\ \hline Collector-Emitter Sustaining Voltage (N (I_C = 30 mAdc, I_B = 0) \\ \hline (V_{CE} = 30 vdc, I_B = 0) \\ \hline (V_{CE} = 60 Vdc, I_B = 0) \\ \hline (V_{CE} = 60 Vdc, V_{EB} = 0) \\ \hline (V_{CE} = 40 Vdc, V_{EB} = 0) \\ \hline (V_{CE} = 80 Vdc, V_{EB} = 0) \\ \hline (V_{CE} = 100 Vdc, V_{EB} = 0) \\ \hline (V_{CE} = 100 Vdc, V_{EB} = 0) \\ \hline \textbf{Emitter Cutoff Current } (V_{BE} = 5.0 Vdc, I_B \\ \hline \textbf{Collector Cutoff Current} \\ \hline Collector Cut$	cteristic ote 2) c = 0) 0 Vdc)	TIP41, T	TIP TIP TIP 1P41A, TI 41C, TIP 41C, TIP	TIP41, TIP42 41A, TIP42A 41B, TIP42B 41C, TIP42C P42, TIP42C P42, TIP42A 42B, TIP42C TIP41, TIP42 41A, TIP42A 41B, TIP42B	V _{CEO(sus)} I _{CEO} I _{CES}	40 60 80 100 - - - - - - -	- - - - - - - - - - - - - - - - - - -	Vdc mAdc µAdc
Capable of dissipating much more power than small-signal devices (2N3904) DC current gain:	$\label{eq:constraint} \begin{array}{ c c c c } \hline Characle \\ \hline \textbf{OFF CHARACTERISTICS} \\ \hline \hline \textbf{Collector-Emitter Sustaining Voltage (N (I_C = 30 mAdc, I_B = 0) \\ \hline (I_C = 30 mAdc, I_B = 0) \\ \hline \textbf{Collector Cutoff Current} \\ (V_{CE} = 30 Vdc, I_B = 0) \\ (V_{CE} = 60 Vdc, V_{EB} = 0) \\ (V_{CE} = 40 Vdc, V_{EB} = 0) \\ (V_{CE} = 60 Vdc, V_{EB} = 0) \\ (V_{CE} = 100 Vdc, V_{EB} = 0) \\ (V_{CE} = 100 Vdc, V_{EB} = 0) \\ \hline \textbf{Concentration Current} \\ \hline \textbf{ON CHARACTERISTICS (Note 2)} \\ \hline \textbf{DC Current Gain (I_C = 0.3 Adc, V_{CE} = 4.1 \\ \hline \textbf{Concentration Current} \\ \hline Concentration Cur$	ccteristic ote 2) c = 0) 0 Vdc) 0 Vdc) = 6.0 Adc,	TIP41, T TIP41B, TIP TIP41B, TIP	TIP TIP TIP 1P41A, TI 41C, TIP 41C, TIP TIP TIP TIP	TIP41, TIP42 41A, TIP42A 41B, TIP42B 41C, TIP42C P42, TIP42C P42, TIP42A 42B, TIP42C TIP41, TIP42 41A, TIP42A 41B, TIP42B	V _{CEO(sus)} I _{CEO} I _{CES} I _{EBO}	40 60 80 100 - - - - - - - 30	- - - 0.7 0.7 400 400 400 400 1.0	Vdc mAdc µAdc

Audio amplifier analysis

Further reading

- Filter design tool: <u>http://sim.okawa-denshi.jp/en/Fkeisan.htm</u>
- Advanced BJT theory (from 6.012 course notes): <u>https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-012-microelectronic-devices-and-circuits-spring-2009/lecture-notes/MIT6_012S09_lec17.pdf</u>
- Overview of amplifier classes: <u>https://www.maximintegrated.com/en/design/technical-</u> <u>documents/tutorials/5/5590.html</u>