
Page 1

- 1 -

Parallel Computational Models

6.173
Fall 2010
L02

Agarwal

- 2 -

Parallel Computational Models
Formally, a Computational Model is a

Coherent collection of mechanisms for

– communication
– synchronization
– partitioning
– placement
– scheduling

Computational model defined at all levels of
abstraction:

Machine hardware – e.g., a shared-memory
machine

Language – e.g., a message passing language

Algorithm – e.g., a CREW (concurrent read,
exclusive write) shared-memory algorithm

Let’s review some examples to build intuition

Page 2

- 3 -

For Reference: Sequential Programming Model

Blackboard captures state

Designer

State stored
in memory

Process

memory

Process
operates on data
in memory

I/O

I/O puts
external data
into memory

- 4 -

Shared Memory Parallel Programming Model

Blackboard captures state

Designers

Communication: via shared memory
Synchronization: shared memory locks

Shared memory

Threads
E.g., pthreads

memory
lock

Discuss:
What is it good for; not good for?
Shared memory programming models have many variants;
we will revisit in a later lecture

Page 3

- 5 -

Shared Memory Machine Model

Uniform access shared memory (SRAM)

Processes -
Parallel
control
flowProcessor 0 Processor 1

St

Ld

Locks can be done by holding the bus and
performing back to back load-store

StLd
BUS

Communication: via shared memory
Synchronization: shared memory locks

Shared
data

(Historical: MIMD – Multiple instruction multiple data)

- 6 -

Shared Memory Machine Model

Non-uniform access shared memory (SRAM)

Processor 0 Processor 1

RING

Can replace bus with a ring (Beehive),
or mesh (Tile processor)

Page 4

- 7 -

Beehive and Modern Manycores
also have Per-Processor Caches

Non-uniform access shared memory (SRAM)

Processor 0 Processor 1

RING
cache cache cachecache

Caches introduces the cache coherence problem
– we will study this in depth later in the course

Historical note: the cache coherence problem
occupied computer architects for an entire
decade in the 90’s!

- 8 -

Need for Synchronization

Uniform access shared memory (SRAM)

Processor 0 Processor 1

St

Ld
BUS

Shared
data

When should Processor 0 read the data
being written by Processor 1?

Not OK
OK

Yesssss!

Producer-Consumer synchronization

Page 5

- 9 -

Need for Synchronization

Uniform access shared memory (SRAM)

Processor 0 Processor 1

BUS

Shared
data

How to safely increment shared counter?

33
counter

3333
+1 +1

34 34

Final state is
not correct!

- 10 -

Need for Synchronization

Uniform access shared memory (SRAM)

Processor 0 Processor 1

BUS

Shared
data

How to safely increment shared counter?

33
counter

33
+1

34

Mutual exclusion synchronization
(Atomic: if open, then lock, else retry)
Hold bus captive for read/write on lock

open
locked
open34

Page 6

- 11 -

Need for Synchronization

Uniform access shared memory (SRAM)

Processor 0 Processor 1

BUS

Shared
data

How to safely increment shared counter?

33
counter

33

+1

34

Mutual exclusion synchronization
(Atomic: if open, then lock, else retry)
Hold bus captive for read/write on lock

open

open34
locked
locked

NopeNopeNope

- 12 -

Shared Memory Algorithm Model

PRAM – Parallel Random Access Memory

R
W

Processors

Shared memory

Variants
Multiple simultaneous R,W -- CRCW PRAM
Exclusive writes only -- CREW PRAM
Exclusive R & W -- EREW PRAM
… may be realistic….. or not.

Summary: we just saw shared memory
programming model, shared memory machine
model, and shared memory algorithm model

Page 7

- 13 -

Message Passing Parallel Programming Model

Communication: via messages
Synchronization: via messages

Discuss:
What is it good for; not good for?
Inspired by object oriented programming model

Message
You are so
full of
%*&*#

Beehive is a
shared memory

machine

Beehive is a
message passing

machine

Process A

Private
Memory

Process B

Private
Memory

message

E.g., MPI

- 14 -

Message Passing Parallel Machine Model

local
memory

local
memory

local
memory

local
memory

Parallel
control
flows

Synchronization
via messages

msg

msg

Message can achieve
communication and
synchronization in a
single action

Processor 0 Processor 1

RING

Communication
via messages.
Send/receive
msg are
new instructions

msg

(Historical: MIMD – Multiple instruction multiple data)

Send
message Receive

message

Page 8

- 15 -

Message Passing Parallel Machine Model

local
memory

local
memory

local
memory

local
memory

Parallel
control
flows

Processor 0 Processor 1

Communication
via messages

msg

Can also use a bus or
mesh (or other
interconnect) for
communication

BUS

- 16 -

Message Passing Parallel Machine Model

local
cache

local
cache

local
cache

local
cache

Parallel
control
flows

Processor 0 Processor 1
BUS

Main Memory

Can replace local memories with private caches (as in Beehive).
Cache demand fetch data from main memory as needed.
Since there is no shared data in the message passing model,
there is no cache coherence problem.

Page 9

- 17 -

Producer Consumer Synchronization in
Message Passing Model

local
memory

local
memory

local
memory

local
memory

msg

Processor 0 Processor 1

RING

Producer sends data when it is ready,
so receiver can assume received data in
message is good

Message can achieve
communication and
synchronization in a
single action

- 18 -

Mutual Exclusion Synchronization in
Message Passing Model

local
memory

local
memory

local
memory

local
memory

Processor 0 Processor 1

RING

Processor 0 is in charge of counter object.
If you want to increment counter, send message to processor 0

33

Counter
object

Msg: incr by 1

Processor 0 serializes multiple requests.

Msg: incr by 1

Message can also contain a piece of code (or a pointer to code)
that Processor 0 should run (variously called active message,
future)

Msg: if val smaller than count, replace count with val

Page 10

- 19 -

Message Passing Model

To Share or Not to Share

local
memory

local
memory

local
memory

local
memory

Processor 0 Processor 1

RING

33

Counter
object

No sharing of data (almost).
Discuss: One thing is still shared, what is it? So, how do you
share/bootstrap?

Message passing models often share immutable initial state,
read-only data, etc.
This immutable shared data is often copied into all local
memories at initialization

- 20 -

Message Passing Algorithm Model

Postal model for message passing

[SPAA 1992]

Processors

Summary: we just saw shared memory
programming model, shared memory machine
model, and shared memory algorithm model

M
P

1 unit of
time
sending

L units of
time in
transit

1 unit of
time
receiving

Page 11

- 21 -

Many More Computational Models Exist

Streaming model

Dataflow model

Data parallel model

Hybrid models

Invent a new one and get a phd…

Details in 6.846

