Tile Processor
Case Study of Contemporary Multicore

Fall 2010
Agarwal
6.173

Tile Processor (TILEPro64)

<table>
<thead>
<tr>
<th>Performance</th>
<th>TILEPro64</th>
</tr>
</thead>
<tbody>
<tr>
<td># of cores</td>
<td>64</td>
</tr>
<tr>
<td>On-chip cache (MB)</td>
<td>5.6</td>
</tr>
<tr>
<td>Cache coherency</td>
<td>Yes w/ DDC</td>
</tr>
<tr>
<td>Operations (16/32-bit BOPS)</td>
<td>221/166</td>
</tr>
<tr>
<td>On chip bandwidth (Terabit/s)</td>
<td>38</td>
</tr>
<tr>
<td>Clock speed (MHz)</td>
<td>700, 866</td>
</tr>
<tr>
<td>Power</td>
<td></td>
</tr>
<tr>
<td>Typical power -7 device (W)</td>
<td>17-21</td>
</tr>
<tr>
<td>I/O and Memory</td>
<td></td>
</tr>
<tr>
<td>Ethernet bandwidth</td>
<td>2 XAUI, 2GbE</td>
</tr>
<tr>
<td>PCIe interfaces</td>
<td>2 x 4-lanes</td>
</tr>
<tr>
<td>DDR2 bandwidth (peak Gbps)</td>
<td>200</td>
</tr>
</tbody>
</table>

TILE64 in 2007
TILEPro64 and TILEPro36 in 2008
TILEGx36 and TILEGx100 in 2011
Tiled Multicore Concept

- Scales to large numbers of cores
- Modular – design and verify 1 tile
- Power efficient
 - Short wires plus locality opts – CV^2f
 - Chandrakasan effect, more cores at lower freq and voltage – CV^2f

Processor
Core

Core + Switch = Tile

Remember the 3 P’s?

- Performance challenge
 - How to scale with number of cores – mesh network
 - Distributed scheme for cache coherence
 - User-level network access

- Power efficiency challenge
 - Distributed architecture
 - Mesh network
 - Local caches

- Programming challenge
 - Cache coherence
 - General purpose, full featured cores
 - Fine-grain protection
Key Ideas

1. General purpose cores
 - Standard OS and programming
2. iMesh™ Network
 - How to scale and be energy efficient
3. Multicore Dynamic Distributed Cache
 - How to achieve cache coherence and run standard software
4. Fine grain protection
 - How to virtualize multicore
5. Multicore Development Environment
 - How to program

1 – What’s in a Core

- Processor
 - Each core is a complete computer
 - 3-way VLIW CPU
 - Designed for low power – 200mW per core
 - SIMD instructions: 32, 16, and 8-bit ops
 - Instructions for video (e.g., SAD) and networking
 - Protection and interrupts
 - Single core performance roughly the same as a modern MIPS or ARM core
- Memory
 - L1 cache: 8KB I, 8KB D, 1 cycle latency
 - L2 cache: 64KB unified, 7 cycle latency
 - 32-bit virtual address space per process
 - 64-bit physical address space
 - Instruction and data TLBs
 - Cache integrated 2D DMA engine
- Switch in each tile
 - ISA allows direct processor access to networks
- Runs SMP Linux
- Runs off-the-shelf open-source C/C++, pthreads programs
2- On-Chip Networks

• Distributed resources
 - 2D Mesh peer-to-peer tile networks (named iMesh™)
 - 6 independent networks
 - Each with 32-bit channels, full duplex
 - Tile-to-memory, tile-to-tile, and tile-to-IO data transfer
 - Packet switched, wormhole routed, point-to-point
 - Near-neighbour flow control, dimension-ordered routing

• Performance and energy efficiency
 - One cycle hop latency
 - 2 Tbps bisection bandwidth
 - 32 Tbps interconnect bandwidth
 - Low power

• 6 independent networks
 - Five dynamic
 • IDN – System and I/O
 • MDN – Cache misses, DMA, other memory
 • TDN, VDN – Tile to tile memory access and coherence
 • UDN
 - One static, scalar operand network
 • STN – User-level streaming and scalar transfer

• for scalability and power efficiency

Direct User Access to Interconnect

• Enables stream programming model
• Compute and send in one instruction:
 - add $udnO, $r3, $udnI
• Automatic demultiplexing of streams into registers
• Number of streams is virtualized
• Streams do not necessarily go through memory for power efficiency
Mesh Power Efficiency

80% power savings over buses

3 – Coherent On-Chip Cache System

- **Distributed cache**
 - Each tile has local L1 and L2 cache
 - Aggregate of L2 serves as a globally shared L3

- **Dynamic Distributed Cache (DDC™)**
 - Hardware based cache coherence
 - Hardware tracks sharers, invalidates stale copies
 - One or multiple coherency domains
 - Dedicated networks to manage coherency

- **Coherent direct-to-cache I/O**
 - Header/packet delivered directly to tile caches
 - Cache coherent delivery
 - Significant DRAM bandwidth and latency reduction
4 – Configurable Fine Grain Protection (CFP)

Full Stack Linux with Hypervisor

<table>
<thead>
<tr>
<th>TLB Access</th>
<th>DMA Engine</th>
<th>“User” Network</th>
<th>I/O Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Timers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

Key:
0 – User Code
1 – OS
2 – Hypervisor
3 – Hypervisor Debugger

Multicore Hardwall™ Technology for Virtualization and Protection

The virtualization and protection challenge
- Multicores need to run multiple OS’s and applications in cloud environments
- OS’s must be protected from each other
- I/O and other shared resources must be virtualized

Multicore Hardwall technology
- Protects applications and OS by prohibiting unwanted interactions
- Configurable to include one or many tiles in a protected area
- Supported by Tilera hypervisor running on all the tiles
5 – Standard Tools and Software

Multicore Development Environment

Standards-based tools
- Standard programming
 - SMP Linux 2.6.26
 - ANSI C/C++
 - pthreads
- Integrated tools
 - SGI compiler
 - Standard gdb gprof
 - Eclipse IDE
- Innovative tools
 - Multicore debug
 - Multicore profile

Standard application stack
- Application layer
 - Open source apps
 - Standard C/C++ libs
- Operating System layer
 - 64-way SMP Linux
 - Zero Overhead Linux
 - Bare metal environment
- Hypervisor layer
 - Virtualizes hardware
 - I/O devices drivers
 - Load balancer
Multiple Software Environments to Meet Diverse Needs of Embedded and Cloud Systems

- **Standard SMP Linux**
 - Standard Linux environment with processes and threads
 - Ideal for applications and control plane code requiring operating system services
 - Open source applications work out of the box

- **Standard SMP Linux with Zero Overhead Linux (ZOL)**
 - Zero Linux overhead (Eliminates OS interrupts, timer ticks, etc..)
 - Transparent to programmer - no software change required
 - For high performance data-plane applications not requiring OS services

- **Bare metal environment**
 - Full control of the hardware on up to 64 tiles
 - No operating system or hypervisor layers
 - For embedded applications requiring fine grain control of memory, and IO

- **Hybrid environment**
 - Using 2 or all three of the above models
 - Each environment can be run on one or more Tiles
 - Ideal for customers aggregating data plane and control plane code on one chip

Parallel Programming using Standard Models

- **64-way SMP Linux**
 - Single system image across all tiles

- **Standard pthreads API**
 - pthread_create()
 - Shared memory model by default
 - Synchronize using mutexes and locks

- **Standard Linux processes**
 - fork(), exec()
 - Separate address space
 - Share memory: mmap(), mspaces
 - Communicate: Pipes / local sockets

- **Gentle slope programming optimizations using Linux extensions**
 - Control memory location and distribution
 - Control thread scheduling and location

- **New models and further optimizations using TMC library (Tile Multicore Components)**
Scaling Up: TileGx100 in 2011

- 100 general-purpose cores
- Runs SMP Linux
- Standard programming
- 1.25GHz – 1.5GHz
- Full 64-bit processors
- 32 MBytes total cache
- 546 Gbps memory BW
- 200 Tbps iMesh BW
- 80-120 Gbps packet I/O
- 80 Gbps PCIe I/O
- Wire-speed packet engine
 – 120Mpps
- MiCA engines:
 – 40 Gbps crypto
 – 20 Gbps compress

Scaling Down: TILEGx16™

- 16 Processor Cores
- 1.0 &1.25 GHz speeds
- Full 64-bit processors
- 5.2 MBytes total cache
- 200 Gbps memory BW
- 20 Tbps iMesh BW
- 24 Gbps total packet I/O
 – 2 ports 10GbE (XAUI)
 – 12 ports 1GbE (SGMII)
- 32 Gbps PCIe I/O
- Wire-speed packet engine
 – 30Mpps
- MiCA engine:
 – 10 Gbps crypto
 – 5 Gbps compress &
 – 5 Gbps decompress
- Midrange 36 core part also announced