6.173 Fall 2010, Quiz 1

Page 1 of 12

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.173 Fall 2010

Quiz 1

There are 7 questions and 12 pages in this quiz. Answer each question according to the instruc-
tions given. You have 80 minutes to complete the quiz.

If you find a question ambiguous, be sure to write down any assumptions you make. Please be
neat and legible. If we can’t understand your answer, we can’t give you credit!

Use the backs of pages if you need scratch space. You may also use them for answers, although
you shouldn’t need to. If you do use the blank sides for answers, make sure to clearly say so!

This exam is open book.

Before you start, please write your name CLEARLY in the space below.

Do not write in the boxes below

3

4

5

6

Total

20 pts

15 pts

20 pts

15 pts

10 pts

15 pts

5 pts

100 pts

Name: O ToalsS

6.173 Fall 2010, Quiz 1 Page 2 of 12

1. [20 points]: Cache coherence

Wrist Inc. has been selling a bus based multicore processor which uses the MSI cache coherence
protocol characterized by the state machine shown below. “a” refers to the address of the location

accessed by the local processor.

My local reguest
Ext. bus request

My bus response

Local write
Broadcast a; Fetch block
Z

Ltocal read
Fetch block

(a) (5 points) Briefly explain the purpose of the “Broadcast a” message a core places on the bus
when it transitions from the shared state to the modified state.

T(‘g\ﬁs'\se'\m »\a\P‘PQ/v\S wWan \o(ﬂ\\ (YL ARTS MCA\-((O'\Y\O
o g ced emory \ocatront, Broadeodt leds olney

CAMLS enow Jneir ccP‘ws ae non Stall and sha\d
be ‘nual) dnted .

6.173 Fall 2010, Quiz 1 Page 3 of 12

Wrist customers have been complaining that the Wrist bus often becomes a bottleneck, so Wrist
engineers have come up with an idea to reduce bus traffic. They postulate that by splitting the shared
cache block state into two states they can reduce bus traffic: exclusive (where an unmodified block
lives in exactly one cache) and shared (where an unmodified block lives in more than one cache).

The engineers figure out that the added state requires two sets of changes. First, they have to add a
new bus signal called Shared/Not_Shared. When a cache suffers a read miss and attempts to
fetch the block from main memory, the Shared/Not_Shared bus signal is forced to the Shared
state if any of the other caches have that block in their cache. Second, the state diagram must be
updated.

(b) (10 points) Update the state diagram shown below by drawing the necessary transitions between
the states exclusive, shared, modified and invalid, labeling each transition appro-
priately. You may have to modify some existing transitions and/or labels.

Local read
RAch blodk ¢ 1Shoyed

My locol request

Ext. bus request
My bus response

Local write
Broadcast a; Fetch block

Locol read
Fetch blockﬂ

Local write
Broadcasta

(¢) (5 points) Briefly explain how including the exclusive state reduces bus traffic.

(/Or'\%ms—b an exdusive cadhl \ing dooon't

requwe o Broodcast 5Ly o Mr cadk
needs Yo inval dadl BNy Ve ny -

6.173 Fall 2010, Quiz 1 Page 4 of 12

2. [15 points]: Data partitioning

In this problem you will explore various was of creating an N -way partitioning a form of 2D Jacobi
relaxation on a two-dimensional array A with dimensions N x N as shown below.

012. N-1

T Eee So RS EEh S e oo

N-1 " B T i

Unlike the familiar Jacobi relaxation in which we averaged 4 neighboring values according to the
computation,

here the averaging uses 6 neighboring values according to the computation,

Mot (o PrRVI arey (o) proveaRy @ nedcd e nud o
Assume a simple message passing machine model with N processors, in which a processor takes 1

cycle to send a word to a different processor. Similarly, receiving each word from a different processor
also takes 1 cycle.

(2) (5 points) Partition by row: Suppose the data is partitioned so that each processor owns 1 row of
data. Recall that each row has N words of data. Ignoring boundary effects, compute the number
of cycles any given processor spends in sending or receiving data.

Semé,f?vw to N4 S neagioors @ 2w ovyleg
A
rev ol fom N4 nci‘s\\kwje N ke ‘S aN ayeles

6.173 Fall 2010, Quiz 1 Page 5 of 12

(b) (10 points) Rectangular partitioning: Now suppose we partition the array among the N proces-
sors such that each processor gets a rectangular tile of data with elements in the i dimension
and y elements in the j dimension. Assume that z > 2, y > 2 and, for load balancing, assume
that the following constraint is met: -

N =zy

Compute the number of cycles in terms of z and y that any processor spends sending or receiv-
ing data for this rectangular partitioning.

X vls
——bothsud ¢ recaive!
X
’Zg{ =i 2y Vol
VAS
L ST

+total sond A rective = 4y 48y a'\fJJLS

6.173 Fall 2010, Quiz 1 Page 6 of 12

3. [20 points]: Software Barrier

Recall that a barrier ensures across all cores that all actions before the ** barrier call are completed
before any actions after the i** barrier call. Grace has provided the following correct code of a bar-
rier implementation that only sends messages to the next sequential core. In Grace’s implementation
core 2 plays a special role in initiating the messaging involved in implementing the barrier function-
ality. Grace assumes that sw_barrier is the only generator of message traffic.

sw_barrier ()

{
int me = corenum(); // my core number
int next = (me == enetCorenum()-1) ? 2 : me+l; // next core number
IntercoreMessage dummy; // an empty message

// unless I’'m core 2, wait until prev core sends us a message
if (me != 2) while (message_recv (&dummy) == 0);

// tell next core we’ve entered the barrier
(,-, message_send (next,msgTypeBarrier, &dummy, 0) ;

N W\QMQQS // wait until prev core sends us a message. Core 2 is waiting for
// last core to enter the barrier, other cores are waiting for
// earlier cores to message that they’re exiting the barrier.

while (message_recv (&dummy) == 0);

// unless I’m the last core, tell next core we’re exiting the barrier
/-# if (next != 2) message_send (next,msgTypeBarrier, &dummy, 0) ;

N_'l W\QS$MQS // all done! return from barrier
}

(a) (4 points) If N cores are participating in the barrier, how many total messages are sent for the
ith invocation of sw_barrier?

totol massoops ~ N A (N-1) 2 2ud-]

6.173 Fall 2010, Quiz 1 Page 7 of 12

f\‘"
e
Mﬁg .

herg!

Ben Bitdiddle doesn’t want core 2 to be special so he deletes all the conditional executions based

on the core number. In the copy of Grace’s code below, Ben’s deletions are shown using strikeout
notation.

sw_barrier ()

{

int me = corenum(); // my core number

int next = (me == enetCorenum()-1) ? 2 : me+1; // next core number
IntercoreMessage dummy; // an empty message

// wntess—TFim eere—2+ wait until prev core sends us a message
+f—fme—1=2) while (message_recv(&dummy) == 0);

// tell next core we’ve entered the barrier
message_send (next,msgTypeBarrier, &dummy, 0) ;

// wait until prev core sends us a message. Core 2 is waiting for
// last core to enter the barrier, other cores are waiting for

// earlier cores to message that they’re exiting the barrier.
while (message_recv(&dummy) == 0);

// vntess—Iimthe-last—eere, tell next core we’re exiting the barrier
if—next—1=—2) message_send (next, msgTypeBarrier, &dummy, 0) ;

// all done! return from barrier

(b) (8 points) Sadly this code does not implement the desired functionality. To help Ben understand

why give a specific scenario where the code above will fail.

As cores emder bawf\%f) sy ‘°°P iy for
A %oyl =~ bR o wre sends 4 mLssoqﬁF

= emter Lk barriey , bot nvey e}

6.173 Fall 2010, Quiz 1 Page 8 of 12

Disappointed that his last “improvement” failed, Ben makes another attempt. Not really understand-
ing why Grace has implemented a two-phase process (first message indicates barrier entry, second
message indicates barrier exit), he removes the second phase altogether. Again, in the copy of Grace’s
code below, Ben’s deletions are shown using strikeeut notation.

sw_barrier ()

{

int me = corenum(); // my core number

int next = (me == enetCorenum()-1) ? 2 : me+l; // next core number

IntercoreMessage dummy; // an empty message

// unless I'm core 2, wait until prev core sends us a message
if (me != 2) while (message_recv (&dummy) == 0);

// tell next core we’ve entered the barrier
message_send (next, msgTypeBarrier, &dummy, 0) ;

// all done! return from barrier

(c) (8 points) Briefly explain the purpose of the second set of messages and give a specific scenario
where the code above will fail.

“The secend $’U\ 0\ WSSOGSLS ersyres No wre \60\\&5
s o ey Uil ﬂ ores houe evtered g boorie(.

Widnal Nug Spcond A ok messodls cere 2 wil)

&\t bovder o4 Soor os 1t Sends ¢ g'ugl messaye
J

Won W v ols wreg ewe envtered \'hr/')er!

6.173 Fall 2010, Quiz 1 Page 9 of 12

4. [15 points]: Parallel TSP
Eliza is writing a parallel TSP program for the Beehive, and she has some questions for you.

Eliza keeps the current minimum known cost for branch-and-bound in a global 32-bit integer variable
mincost. Each core reads mincost when deciding whether to abandon investigating a path, and
updates mincost when it finds a shorter path. Eliza wonders whether she needs to protect uses of
mincost with alock. She is trying to choose between this locking code sequence:

icSema_P (costSema);
cache_invalidateMem(&mincost, sizeof (mincost));
if (current_cost < mincost) {

mincost = current_cost;

cache_flushMem (&mincost, sizeof (mincost));

}

icSema_V (costSema);
and this non-locking code sequence (identical except for the missing semaphore calls):

cache_invalidateMem(&mincost, sizeof (mincost));
if (current_cost < mincost) {

mincost = current_cost;

cache_flushMem (&¢mincost, sizeof (mincost));

}

(2) (7 points) Describe a scenario in which the non-locking code sequence would result in slower
TSP execution than the locking code sequence.

Wi vo ‘oclhmo W\u\ new minesl midh 432){ owrrriyn
Tg, o Miegt=100. Pignrs mwned= 10 R discannry, minost <9

A Qosheg 7w & Lishes = miaestz99 . So meany oddational
<eA/MgS av) R }ev-go(meé vaneccessa i) |

(b) (8 points) Suppose mincost were a 64-bit integer instead of a 32-bit integer, the difference
being that it takes two 32-bit memory accesses to read or write mincost and although the two
words occupy consecutive memory locations, the words may not be in the same cache line. Sug-
gest a potential correctness problem with the non-locking code sequence.

w Msw

Sippsk Mmwast = [o 12] ond dhon A P-)o\"ﬁlﬂ-s
LW A ek} l'Zq'l 2 ond SPVH"M EE
1 doe arder o A Slucngg 35 Pugw Bsw, Brgw Bug then

o s 55 [T] i) e b b o
Brot might hove digeovered e Aeoe min wk -

6.173 Fall 2010, Quiz 1 Page 10 of 12

5. [10 points]: Shared Memory Synchronization

Fetch-and-inc is a wait-free synchronization operation that allows any processor to atomically in-
crement a shared memory location, receiving the original value as the result of the operation. It is
used to prevent the interleaving of read, add, and write operations from multiple processors trying to
increment the location concurrently.

Finish this software implementation of fetch-and-inc. You should use only existing Beehive mecha-
nisms.

// atomically increment location, returning old value
int fetch_and_inc(int =*valptr)

{

(Gawar- P (vellack) | llopin 2xdusive acass
Mown
coche- inval '\Lm\e'(vol P‘\-f , ‘?\MC& volp%)) 5 ol s“ro\\e m\u-(

int rv = xvalptr;

*valptr = rv + 1;

axn _&\)g/\N\w (ve ﬁ'(p Sized (!Vﬂ\\t:ﬁr)) ') I weke Ao Mmimie "'9
1cSomaV (VolLeky 4 releag Y \ed .

return rv;

6.173 Fall 2010, Quiz 1 Page 11 of 12

6. [15 points]: Verilog & Finite State Machines

Consider the following Verilog module that iteratively computes the square root of an 8-bit integer
value.

module sqgrt (input clk, start,
input [7:0] data,
output reg [3:0] answer,
output reg done);
reg busy;
reg [1:0] bit;

wire [3:0] trial;
assign trial = answer | (1 << bit); // << is left shift

always @ (posedge clk) begin
if (busy) begin
if (bit == 0) busy <= 0;
else bit <= bit - 1;
if (trialxtrial <= data) answer <= trial;
end
else if (start) begin
busy <= 1;
answer <= 0;
bit <= 3;
end
end

assign done = ~“busy;
endmodule

(a) (3 points) If start is asserted during cycle 100, during which clock cycle will done be as-
serted? Hint: the FSM always runs for a fixed number of clock cycles before asserting done.

O.QJL Voo« shust gusred
o\ b =3

oz =~ 2
(03 < 1
joa =)

= |05 dong rssarted

6.173 Fall 2010, Quiz 1 Page 12 of 12

(b) (12 points) Please neatly complete the timing diagram below as the module computes the square
root of 169:

o _| L L

e B9

DATA[?:0]

P,

{
!

- »w»v'«{vvw e gaar S T IRRY SRR,

|
i

I (———
b

LU RN G O I !

-) o 7
sy 7 K B K oW T
swegol T2 W O WK 17 N

DONE

N 17

7. [S points]: Feedback!

Please take a couple of minutes to give us some feedback on the course. Has the course material been
what you expected? How much time have you spent on the labs? Which course activities (lectures,
labs, paper readings) have worked well? Which need re-engineering? Any feedback you wish to
provide would be most welcome.

“Thanks 'QOV Yo COW\MQ/V(\'S J

END OF QUIZ 1!

