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Abstract: As a research effort to investigate both hardware
and software aspects of highly parallel computation, the
Research Parallel Processor Project (RP3) has been initi-
ated in the IBM Research Division, in cooperation with the
Ultracomputer Project of the Courant Institute of NYU.
The RP3 machine being designed is a highly parallel MIMD
design with a uniquely flexible organization encompassing
both shared memory paradigms and local memory
message-passing paradigms, as well as mixtures of the two
chosen at run time. It is being designed to accommodate
512 state-ol-the-art microprocessors. A full configuration
will provide up to 1.3 GIPS, 800 MFLOPS, 1-2 Gbytes of
main storage, 192 Mbytes/second ¥/O rate, and 13
Gbytes/second inter-processor communication. Perform-
ance evaluations indicate that approximately 1 GIPS per-
formance should be sustainable. This is the first of a set of
papers describing the RP3 [9] and the performance analysis
[10,12}] on which its design is based.

1.0 Introduction

To investigate both hardware and software aspects of highly
parallel computation, the Research Parallel Processor
Project (RP3) has been initiated in the IBM Research Divi-
sion, in cooperation with the Ultracomputer Project of
NYU. This paper describes the architecture of the RP3 and
the initial software support planned; and discusses charac-
teristics of the project as a whole. Companion papers sub-
mitted to this conference will discuss the machine design in
more detail [9] and present the performance analysis tech-
niques and results that lead to the RP3 design [10,12].

2.0 Overview

RP3 is a highly parallel, high performance MIMD process-
ing system with a uniquely flexible organization encom-
passing both shared memory paradigms (e.g., the NYU
Ultracomputer [4]) and local memory message-passing
paradigms (e.g., the Cal Tech “Cosmic Cube” {14]), as well
as mixtures of the two chosen at run time. It is being de-
signed to accommodate 512 state-of-the-art microprocess-
ors. A full configuration will provide up to 1.3 GIPS, 800
MFLOPS, 1-2 Gbytes of main storage, 192 Mbytes/second
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1/0 rate, and 13 Gbytes/second inter-processor communi-
cation. Hardware support for performance monitoring is
included throughout the system; it allows measurement of
many performance-related parameters with minimal impact
on system performance.

The performance sustainable by a full system as a
function of instruction and data cache miss ratios is illus-
trated in Figure 1. This figure does not take into account
algorithmic and software overheads due to locking, serial-
ization, etc., but does account for data access delays due to
contention in the interconnection network, at the memory
modules, etc.; its derivation is described in a companion
paper [10). Here we note that, at least for, scientific appli-
cation code, we expect that instruction miss ratios will be in
the 19%-2% range and data miss ratios wi in the 20%
range; this has been verified by simulau'tﬁfesome codes.
Under those circumstances, RP3 should 8iver sustained
performance of approximately 1 GIPS. This estimate is
conservative, since it assumes that all memory traffic is
global, and hence passes through the switch; it does not take
into account fairly obvious optimizations of placing code
and/or local data in local memory, where its access by-
passes the switch, .

Given the processing speed possible with RP3, we
consider its peak 1/0 bandwidth to be much less than opti-
mum. Lacking other firm guidelines, it would be preferable
to follow the traditional rule of one megabyte/second/MIP,
implying 2 peak I/O bandwidth of 1G byte/second. Un-
foriunately, at 3M bytes/second peak rate for the I/0 de-
vices used, this would imply in excess of 300 DASD units,
which is physically impractical.

RP3 is a mixed technology system: The processing
elements — processor, main memory, and support hardware
— are constructed from FET logic and are air-cooled. A
major portion of the interconnect network — a variant of
an Omega network [8] — is, on the other hand, con-
structed from high-speed water cooled bipolar logic pack-
aged in thermal conduction modules (TCMs) [1]. Our
performance evaluation, described in a companion paper
[10], has shown that this provides the low-latency access to
global memory needed to meet our performance goal of 1
GIP. The relative access speeds for cache, local, and global



memory, using the bipolar network, are 1:10:15. This use
of mixed technologies in support of shared memory is a po-
tentially controversial aspect of RP3. 1t is discussed in more
detail in a later section.

A sub-network constructed from FET logic provides
the function of combining memory references as proposed
for the NYU Ultracomputer [4]; a companion paper indi-
cates why we consider this function necessary [12]. (The
bandwidth, bzt not the latency, of the combining neiwork
is actually identical to that of the bipolar network. How-
ever, only the bipolar network’s bandwidih was included in
the 13G bytes/second figure quoted above.) The neiwork
is described in a later section.

Figure 2 shows the floor plan of a full RP3 config-
uration. The outer diameter is approximately 32 feet. Each
“H-shaped”” unit contains a full 64-way subsystem, com-
plete with memory, 1/0 connections, and a portion of the
network. The parallel elements of the “H” contain proc-
essing elements, memory, etc; the central crossbar of the
“H” contains the bipolar network switch logic. Notice that
the network consumes substantially less than one third of
the volume of the system. Our estimates indicate that the
network accounts for far less than one half of the develop-
ment and manufacturing cost of the system.

3.0 Purpose

It must be emphasized that the purpose of the RP3 project

is researcly into both hardware and software aspects of par-

allel procesgi.xig.li There are se®ral implications of this:

1. RP3 is fiot a product, mor is it associated with any
product ‘éurrently under development. We of course
hope it will influence future products.

2. Very few copies of the machine will be built. As this is
wrilten, there are no firm plans for replication or for the
field support that replication would imply.

3. Given the prior item, whenever a trade-off was possible
between a large quantity of hardware and additional
design effort, we chose the large quantity of hardware.

4. Finally, it is intended that RP3 be an “open” project:
We hope to collaborate with a number of different or-
ganizations, primarily in software development. Most
aspects of hardware collaboration are impractical due
to the proprietary nature of the technologies used in the
design.

4.0 Architecture

The architecture of RP3 is illustrated in two figures:
Figure 3 shows the processor/memory element (PME)
structure and network connection, while Figure 4 shows
support for I/0O, performance monitoring, and console
functions.
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4.1 Processor/Memory Element (PME)

Each processor/memory element (PME) contains a high-
performance  32-bit  state-of-the-art microprocessor;
2M-4M bytes of memory; a 32K byte “intelligent” cache
memory; floating-point support; and an interface to an 1/0
and support processor (ISP) (shown in Figure 4). As part
of address translation, the PMEs provide a memory map-
ping function unique to RP3, allowing memory to be dy-
namically partitioned between e[ﬁcienﬁy-aocessible global
and local memory. The latter is described in the next sec-
tion.

The RP3 processor is a proprietary design based on
the ““801” [13] philosophy that all instructions should nom-
inally complete in a single cycle; unlike other examples of
what has been called the RISC organization (e.g.,[11,6,7)),
it has an extensive instruction set and performs necessary
interlocks internally in hardware. The floating-point sup-
port unit provides floating-point operations on 32- and
64-bit quantities; both scalar and storage-to-storage vector
operations are provided (see companion paper [9]).

Referring to Figure 3, memory references issued bya
processor, floating point wnit, or I/0 interface are first
translated by a memory mapping unit. In addition to pro-
viding conventional segment/ Page mapping, address trans-
lation provides additional information unique to RP3. Some
of this information controls the local/global memory sup-
port of RP3, described later. Other information is used to
help solve the ““cache coherence” problem: avoiding having
one datum with several values because it appears in several
caches. (For a discussiqn of_this problem, see [16] and the
references it contains).

RP3 solves the cache coherence problem in software,
with hardware assist: A high level language programmer
can declare appropriate data “shared.” The compiler, in co-
operation with the linker and run time storage allocation
system, then puts that data in pages marked “uncacheable”
in the memory map. We do not believe that this will prove
onerous, on two grounds: First, the programmer must al-
ready know which data is shared for program operation to
be correct. Second, an optimizing compiler must know
which data are shared, since certain optimizations cannot
be performed on shared read/write data (e.g., moving in-
variant computations out of loops and allocating data only
in registers). In addition to the above technique, cache
control operations are included which allow cached data to
be invalidated on a line, page, or segment basis (see’ com-
panion paper [9]). In conjunction with a store-through
cache policy, this allows higher performance to be obtained
when the program structure gives processes exclusive access
temporarily to portions of shared data: the shared data can
be cached during the time the process has exclusive access.

Once a memory reference has either bypassed the
cache or resulted in a cache miss (see Figure 3), it reaches
the network interface with a global address, part of which
specifies the PME in which the referenced data lies. If the



reference is to data in the PME where the request origi-
nated, the network interface simply sends the request di-
rectly to the PME’s memory, without involving the network.
If the reference is to data in another PME, the reference is
sent over the network, where another PME’s network
interface responds to it, altering or retrieving the appropri-
ate information. In either event, a response is returned
through the network to the initiating PME. There the re-
sponse is treated as if it had been generated by the local
memory,

4.2 Addressing Structure

RP3 allows all of primary memory to be partitioned be-
tween global, ie., equally accessible memory; and local
memory, i.e., memory accessible with minimal contention
by a single processor. This is done as part of memory map-
ping by specifying whether, after normal translation, inter-
leaving and hashing! is to be performed on the address.

One way of using this feature is shown in Figure 5,
which schematically represents how the global address
space is distributed across the PMEs. Part of each PME’s
memory (shown at left) is allocated to interleaved, global
memory; there, memory and network contention is reduced
by wide interleaving and hashing to a uniform quantity in-
cluded in performance analysis. The rest of each PME’s
memory (shown at right) can be used as true local memory,
entirely located within the PME, accessible rapidly bypass-
ing the network,

Moving the local/global boundary to the far right
makes RP3 a pure shared-memory machine Iike the NYU
Ultracomputer. Moving it to the far left makes RP3 a pure
local-memory machine whose processes can communicate
by message-passing (implemented using inter-memory
block transfer and other features). Intermediate boundary
positions provide a readily-used form of “mixed mode”
computation: shared-memory oriented applications can al-
locate private data locally, gaining efficiency; message-
oriented applications can use global memory to aid load
balancing. Code may reside locally or globally,

The interleave amount is variable, set by a field in the
mapping tables. Together with bounds registers loadable
from the console and diagnostic system, this allows RP3 to
be partitioned into completely independent sub-machines.
Thus one RP3 complex can simultaneously host a “floor”
OS, an experimental OS, application measurement exper-
iments, etc.

4.3 Network

The interconnection network of a shared memory parallel
processor is a dominant component with respect to system
performance. Low latency, adequate bandwidth, and the
ability to “combine” synchronization requests are all re-
quired to robustly achieve the level of system performance

By “bashing” we mean
addresses within a page.

page-dependent one-to-ope reordering of
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desired. As previously mentioned, to achieve these goals
the RP3 interconnection network is composed of two net-
works. One network provides low latency. The other net-
work has the ability to combine messages, in particular
interprocessor coordination function, directed to the same
memory location.

The combining network has the geometry of Lawrie’s
Omega network. The low latency network is a rectanguar
SW banyan [3], similar to an Omega network but providing
dual source-sink paths.

Both networks use a mixture of circuit- and packet-
switching: A message, e.g. a read or write request, is pipe-
lined across switch stages as if circuit-switched; but when
blocked some or all of the message is queued within a switch
stage much like packet-switching. Since messages are pipe-
lined but complete paths need not be allocated or used,
routing control can be localized at the switches, and
throughput is robustly maintained with high traffic levels.

The PME to network routing paths form a bipartite
graph, i.e., all network messages are transmitted between
processors and memories. Direct Processor-to-processor
paths do not exist. The PMEs are physically cornected to
the networks via 4x2 concentrators and 2x4 de-
concentrators; these effectively multiplex each network port
among four PMEs. One output of the concentrators routes
to the low latency network, while the other output port
routes to the combining network, The port chosen is set by
the type of request: In the usual mode of operation, syn-
chronization operations (e.g., fetch-and-OP) are sent to the
combining network and all other requests (e.g., cache line
loads, loads, stores) are sent to the low latency network.
Configuration controls allow all messages to be sent through
either network for experiments.

The low latency network has 128 ports and is con-
structed with four levels of 4x4 switches. The network pro-
vides dual paths between each source and sink. Two such
dual path networks are actually used, one for requests
(processors to memories), and one for replies (memories to
processors). This both provides increased bandwidth and
avoids the possibility of deadlock. It is constructed of
high-speed bipolar logic; time of flight delay between
switches equals logic delay in a switch. SOM bytes/second
is attained on each connection, so the total bandwidth is
12.8G bytes/second (128 connections each for request and
response). ‘The data path is one byte wide, with parity, and
approximately 500 nsec. is required for a message with 8
bytes of data to traverse it (assuming no contention). It
uses a single gate-array chip, replicated voluminously. The
concentrators and deconcentrators, constructed from that
same chip, have similar characteristics. The switch design
is conservative: without altering the underlying technology,
it may be possible to increase the bandwidth by a factor of
2 and decrease the latency by a factor of 4.

The combining network is a 64 port network con-
structed from six levels of 2x2 switches. To route into the
combining network a second level of 4x2 and 2x4



(de)concentrators are used (the 4x2 concentration provides
a level of redundancy in the network). The switches are
constructed from high-density NMOS logic. Each stage can
combine queued references to identical memory locations,
and includes an ALU to implement “fetch-and-OP” oper-
ations. The response network is integrated with the request
network, as required by combining. A wider data path
makes its peak bandwidth the same as the low latency core
switch; but its total latency is much higher, due to slower
logic and more switch stages. This does not produce pro-
portionally increased memory access time, since the switch
is only one of several elements involved in latency, and the
other elements do not change (e.g., concentrators, memory
access time, etc.).

A single low-latency switch would be preferable to our
current design. But logic fast enough to provide the re-
quired latency does not have high enough integration levels
to make this practical at the present time.

4.4 1/0 and Other Support

Support for I/O and performance monitoring, along with
system initialization and configuration, is mediated by the
1/0 and Support Processors (ISPs). These are independ-
ently programmable machines, each containing 2-4 Mbytes
of memory and the same processor used in the PMEs.

As shown in Figure 4, each ISP supports eight
processor/memory elements through a bus attachment that
is independent of the network. Each ISP contains the
interface necessary to drive a standard S/370 channel
(OEM interface) connected to device controllers. It is cur-
rently planned to support only disk storage units (DASD)
and channel-to-channel adapters directly from RP3. The
DASD will be shared with a companion host S/370 to pro-
vide a path for bulk data transfer to and from RP3. The
channel-to-channel adapter(s) will also be used for S/370
communication, allowing either side to interrupt the other
and providing fast transmission of smaller amounts of data
(e.g., terminal 1/0). Through multiple interfaces provided
in each device controllers, multiple ISPs will have access to
each string of DASD.

Through the ISP/PME bus, the ISPs also have access
to the LSSD chains [2] of each PME. These are shift regis-
ters that chain through every bit of each PME’s state, al-
lowing for complete initialization, configuration control,
and in-place diagnosis of the PMEs.

In addition to the connections shown in Figure 4,
groups of eight ISPs are connected to IBM PC/ATs which
bring up and diagnose the ISPs themselves and perform the
functions of a system console. The eight PC/ATs of a full
RP3 configuration will themselves be connected by a local
area network.

The ISP/PME bus also provides for collection by the
ISP of performance data captured in each PME and in the
combining sub-network. From the ISP collection points,
this data can be transferred to the host §/370, or to dedi-
cated I/0 devices, or back into the RP3 PMEs themselves,
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Alternatively, it can be partly processed and sent to the
PC/AT consoles to provide real-time performance moni-
toring displays.

5.0 Software Support

RP3’s initial software support can be directly used for ap-
plications by experienced programmers; but its primary
purpose is to serve as infrastructure supporting creation and
evaluation of a variety of computational models.

BSD 4.2 UNIX2 will be extensively modified internally
by members of the NYU Ultracomputer project to provide
a familiar, popular operating system for RP3. Most modifi-
cations will be user-invisible; they consist of replacing
many internal OS algorithms with serialization-free equiv-
alents developed at NYU, e.g., enqueue/dequeue oper-
ations for scheduling [4,5]. While the system will do
dynamic load balancing, a user will optionally be able to
“lock” processes into processors to do application-
dependent static (or dynamic) load balancing,

User-visible modifications will include inter-process
shared memory; load- and/or run-time use of distributed
and local memory; and a “spawn” primitive, analogous to
UNIX’ “fork,” allowing simultaneous creation of many

processes without having that operation cause a serjal bot-
tleneck.

Programming languages available on RP3 will initially
include C, FORTRAN, and possibly PASCAL. These will
be extended to allow data declared as distributed vs. local
and shared vs. private. Some simple paralle] constructs
(e.g., “parallel DO loops™) will be initially provided by
Ppreprocessing to simplify programs creation; the repertoire
of such constructs is expected to grow as our experience
with the needs of paralle] applications increases.

Prior to RP3 hardware availability, however, applica-
tions can be written and debugged using an experimental
multi-processor environment called VM/EPEX. This uses
standard facilities of the VM operating system to mimic
RP3’s local/global memory facilities. Since it muns code in
native mode, it provides real speedup for multiprocessor
8/370s. Used with many more processes than there are
processors, it allows “virtual” speedup measurements for
much higher degrees of parallelism. Source code compat-
ibility between VM/EPEX and RP3 will be maintained.

6.0 Shared Memory and Mixed Technology
As previously noted, RP3’s use -of mixed technology in
support of shared memory is potentially a controversial is-
sue. Two points can be raised in this area: First, is shared
memory an appropriate paradigm for parallel processing?
Second, can the FET/bipolar speed differential utilized be
maintained with expected advances in the underlying tech-
nology?

?  UNIX is a trademark of Bell Laboratories and AT&T.



The difficulties of programming a global shared-
memory machine are well known. However, the use of
underlying shared-memory hardware must be distinguished
from the use of higher-level paradigms for programming. It
is abundantly clear that very stringent programming disci-
pline must be used to avoid interminable difficulties in par-
alle] programming. The difficulty is deciding which of a
number of proposed disciplines is effective not only in
avoiding problems but also in expressing and utilizing the
concurrency we would like to exploit. In this regard, shared
memory — znd, in RP3 the ability to avoid using it — pro-
vides a blank slate on which a variety of disciplines can be
implemented and experimented with in a non-trivial con-
text,

Regarding underlying technology, it may be the case
that physical extrapolations to ever-smaller feature sizes in-
dicate that the many of the characteristics of FET and bi-
polar transistors will converge [15). However, as far as we
can extrapolate with a good degree of confidence, there are
several miligating factors:

1. The majority of the delay in accessing RP3’s global
memory is not due to the bipolar network, but rather to
the FET components, including the memory itself. We
have in fact verified that the next generation of FET
components can be used with the current bipolar net-
work design with an efficiency virtually identical to
than of the current design.

2. The majority of the size and power used by RP3 is due
not to the bipolar elements, but to the FET compo-
nents. Higher levels of integration and additjonal 1/0
pins in the FET components could result in major re-
ductions in the total machine size, allowing physically
closer placement of the network components. The
packaging that could then be used — all of which exists
now ~— would allow nearly a factor of two improve-
ment in the current bipolar network latency, with the
current bipolar technology. This was not taken into ac-
count in the analysis mentioned in point 1 above.

3. The above indicates that there is little difficulty ex-
tending the RP3 architecture to better technology in the
near term. In the longer term, Packaging must be taken
into account. The network does not require extremely
high levels of logic density, but does require high power
levels and heat dissipation; the processors.and memo-
ries, on the other hand, primarily require high logic
density. The implied differences in packaging result in
very different effective characteristics, even if the
underlying silicon fabrication process is uniform.

It is worth noting that we would not have predicted the
first two points above before going through the design
process as far as we have. Indeed, our initial mechanical
system layout was based on unrealistically optimistic as-
sumptions about the size of the PMEs. It is our experience
that the interaction between silicon and packaging technol-
ogy is quite complex and can lead to radical alterations in
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the organization of a system; interpolation made on the ba-
sis of only one of these technologies is inherently question-
able; and the current universal lack of experience in
designing highly parallel systems makes anything less than
Jull-scale, detailed design based on known, existing ele~
ments a highly uncertain enterprise.

7.0 Conclusion

RP3 provides a highly flexible vehicle for research into
highly parallel processing. Its local/global memory organ-
ization provides for the effective implementation of a wide
variety of program organizations and computational models.
Its performance has been deliberately targeted high enough
to warrant the effort needed to convert real applications to
parallel form, thereby providing better evaluation of the
system.

The performance evaluation and detailed physical and
logical design already performed for the RP3 hardware have
already born fruit in the form of unexpected results. E.g.,
the network required for a highly parallel shared memory
machine need not be a very large fraction of the total ma-
chine cost or volume. We hope that many lessons can sim-
ilarly be learned as we begin to put the RP3 to use.
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Figure 2. Floor Plan of a Full-Scale (512-way) RP3.
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