
Algorithms for Scalable Synchronization on

Shared�Memory Multiprocessors

John M� Mellor�Crummey� Michael L� Scotty

January ����

Abstract

Busy�wait techniques are heavily used for mutual exclusion and barrier synchronization in
shared�memory parallel programs� Unfortunately� typical implementations of busy�waiting
tend to produce large amounts of memory and interconnect contention� introducing per�
formance bottlenecks that become markedly more pronounced as applications scale� We
argue that this problem is not fundamental� and that one can in fact construct busy�wait
synchronization algorithms that induce no memory or interconnect contention� The key to
these algorithms is for every processor to spin on separate locally�accessible �ag variables�
and for some other processor to terminate the spin with a single remote write operation at
an appropriate time� Flag variables may be locally�accessible as a result of coherent caching�
or by virtue of allocation in the local portion of physically distributed shared memory�

We present a new scalable algorithm for spin locks that generates O��� remote references
per lock acquisition� independent of the number of processors attempting to acquire the
lock� Our algorithm provides reasonable latency in the absence of contention� requires
only a constant amount of space per lock� and requires no hardware support other than
a swap�with�memory instruction� We also present a new scalable barrier algorithm that
generates O��� remote references per processor reaching the barrier� and observe that two
previously�known barriers can likewise be cast in a form that spins only on locally�accessible
�ag variables� None of these barrier algorithms requires hardware support beyond the usual
atomicity of memory reads and writes�

We compare the performance of our scalable algorithms with other software approaches to
busy�wait synchronization on both a Sequent Symmetry and a BBN Butter�y� Our principal
conclusion is that contention due to synchronization need not be a problem in large�scale

shared�memory multiprocessors� The existence of scalable algorithms greatly weakens the
case for costly special�purpose hardware support for synchronization� and provides a case
against so�called �dance hall� architectures� in which shared memory locations are equally
far from all processors�

�Center for Research on Parallel Computation� Rice University� P�O� Box ����� Houston� TX ����������� Internet
address	 johnmc�rice�edu� Supported in part by the National Science Foundation under Cooperative Agreement
CCR���
�����

yComputer Science Department� University of Rochester� Rochester� NY ������ Internet address	
scott�cs�rochester�edu� Supported in part by the National Science Foundation under Institutional Infrastruc�
ture grant CDA���������

This paper appeared in ACM Trans. on Computer Systems, February 1991
(The ACM's official PDF was too big to upload to UTCS.)

� Introduction

Techniques for e�ciently coordinating parallel computation on MIMD� shared�memory multiproces�
sors are of growing interest and importance as the scale of parallel machines increases� On shared�
memory machines� processors communicate by sharing data structures� To ensure the consistency of
shared data structures� processors perform simple operations by using hardware�supported atomic
primitives and coordinate complex operations by using synchronization constructs and conventions
to protect against overlap of con�icting operations�

Synchronization constructs can be divided into two classes� blocking constructs that de�schedule
waiting processes� and busy�wait constructs in which processes repeatedly test shared variables to
determine when they may proceed� Busy�wait synchronization is fundamental to parallel pro�
gramming on shared�memory multiprocessors and is preferred over scheduler�based blocking when
scheduling overhead exceeds expected wait time� when processor resources are not needed for other
tasks �so that the lower wake�up latency of busy waiting need not be balanced against an oppor�
tunity cost�� or when scheduler�based blocking is inappropriate or impossible �for example in the
kernel of an operating system��

Two of the most widely used busy�wait synchronization constructs are spin locks and barriers�
Spin locks provide a means for achieving mutual exclusion �ensuring that only one processor can ac�
cess a particular shared data structure at a time� and are a basic building block for synchronization
constructs with richer semantics� such as semaphores and monitors� Spin locks are ubiquitously
used in the implementation of parallel operating systems and application programs� Barriers pro�
vide a means of ensuring that no processes advance beyond a particular point in a computation
until all have arrived at that point� They are typically used to separate �phases	 of an application
program� A barrier might guarantee� for example� that all processes have
nished updating the
values in a shared matrix in step t before any processes use the values as input in step t � ��

The performance of locks and barriers is a topic of great importance� Spin locks are generally
employed to protect very small critical sections� and may be executed an enormous number of times
in the course of a computation� Barriers� likewise� are frequently used between brief phases of data�
parallel algorithms �e�g�� successive relaxation�� and may be a major contributor to run time� Un�
fortunately� typical implementations of busy�waiting tend to produce large amounts of memory and
interconnection network contention� which causes performance bottlenecks that become markedly
more pronounced in larger machines and applications� As a consequence� the overhead of busy�wait
synchronization is widely regarded as a serious performance problem �� �� ��� ��� ��� ��� ����

When many processors busy�wait on a single synchronization variable� they create a hot spot
that is the target of a disproportionate share of the network tra�c� P
ster and Norton ��� showed
that the presence of hot spots can severely degrade performance for all tra�c in multistage intercon�
nection networks� not just tra�c due to synchronizing processors� As part of a larger study� Agarwal
and Cherian �� investigated the impact of synchronization on overall program performance� Their
simulations of benchmarks on a cache�coherent multiprocessor indicate that memory references due
to synchronization cause cache line invalidations much more often than non�synchronization refer�
ences� In simulations of the benchmarks on a ���processor �dance hall	 machine �in which each
access to a shared variable traverses the processor�memory interconnection network�� they observed
that synchronization accounted for as much as ��� of total network tra�c�

In response to performance concerns� the history of synchronization techniques has displayed
a trend toward increasing hardware support� Early algorithms assumed only the ability to read
and write individual memory locations atomically� They tended to be subtle� and costly in time

�

and space� requiring both a large number of shared variables and a large number of operations
to coordinate concurrent invocations of synchronization primitives ��� ��� ��� ��� ���� Modern
multiprocessors generally include more sophisticated atomic operations� permitting simpler and
faster coordination strategies� Particularly common are various fetch and � operations ���� which
atomically read� modify� and write a memory location� Fetch and � operations include test and �

set� fetch and store �swap�� fetch and add� and compare and swap��

More recently� there have been proposals for multistage interconnection networks that combine
concurrent accesses to the same memory location ��� ��� ���� multistage networks that have special
synchronization variables embedded in each stage of the network ���� and special�purpose cache
hardware to maintain a queue of processors waiting for the same lock ��� ��� ���� The principal
purpose of these hardware primitives is to reduce the impact of busy waiting� Before adopting
them� it is worth considering the extent to which software techniques can achieve a similar result�

For a wide range of shared�memory multiprocessor architectures� we contend that appropriate
design of spin locks and barriers can eliminate all busy�wait contention� Speci
cally� by distributing
data structures appropriately� we can ensure that each processor spins only on locally�accessible
locations� locations that are not the target of spinning references by any other processor� All that
is required in the way of hardware support is a simple set of fetch and � operations and a memory
hierarchy in which each processor is able to read some portion of shared memory without using the
interconnection network� On a machine with coherent caches� processors spin only on locations in
their caches� On a machine in which shared memory is distributed �e�g�� the BBN Butter�y ���
the IBM RP� ���� or a shared�memory hypercube ����� processors spin only on locations in the
local portion of shared memory�

The implication of our work is that e�cient synchronization algorithms can be constructed
in software for shared�memory multiprocessors of arbitrary size� Special�purpose synchronization
hardware can o�er only a small constant factor of additional performance for mutual exclusion�
and at best a logarithmic factor for barrier synchronization�� In addition� the feasibility and
performance of busy�waiting algorithms with local�only spinning provides a case against �dance�
hall	 architectures� in which shared memory locations are equally far from all processors�

We discuss the implementation of spin locks in section �� presenting both existing approaches
and a new algorithm of our own design� In section � we turn to the issue of barrier synchronization�
explaining how existing approaches can be adapted to eliminate spinning on remote locations� and
introducing a new design that achieves both a short critical path and the theoretical minimum
total number of network transactions� We present performance results in section � for a variety
of spin lock and barrier implementations� and discuss the implications of these results for software
and hardware designers� Our conclusions are summarized in section ��

� Spin Locks

In this section we describe a series of
ve implementations for a mutual�exclusion spin lock� The
rst
four appear in the literature in one form or another� The
fth is a novel lock of our own design� Each
lock can be seen as an attempt to eliminate some de
ciency in the previous design� Each assumes

�Fetch and store exchanges a register with memory� Compare and swap compares the contents of a memory
location against a given value� and sets a condition code to indicate whether they are equal� If so� it replaces the
contents of the memory with a second given value�

�Hardware combining can reduce the time to achieve a barrier from Olog P � to O�� steps if processors happen
to arrive at the barrier simultaneously�

�

a shared�memory environment that includes certain fetch and � operations� As noted above� a
substantial body of work has also addressed mutual exclusion using more primitive read and write
atomicity� the complexity of the resulting solutions is the principal motivation for the development
of fetch and � primitives� Other researchers have considered mutual exclusion in the context of
distributed systems ��� ��� ��� ��� ���� but the characteristics of message passing are di�erent
enough from shared memory operations that solutions do not transfer from one environment to the
other�

Our pseudo�code notation is meant to be more�or�less self explanatory� We have used line breaks
to terminate statements� and indentation to indicate nesting in control constructs� The keyword
shared indicates that a declared variable is to be shared among all processors� The declaration
implies no particular physical location for the variable� but we often specify locations in comments
and�or accompanying text� The keywords processor private indicate that each processor is to
have a separate� independent copy of a declared variable� All of our atomic operations are written to
take as their
rst argument the address of the memory location to be modi
ed� All but compare �

and swap take the obvious one additional operand and return the old contents of the memory
location� Compare and swap �addr� old� new� is de
ned as if addr� �� old return false�

addr� �� new� return true� In one case �algorithm �� we have used an atomic add operation
whose behavior is the same as calling fetch and add and discarding the result�

��� The Simple Test and set Lock

The simplest mutual exclusion lock� found in all operating system textbooks and widely used in
practice� employs a polling loop to access a Boolean �ag that indicates whether the lock is held�
Each processor repeatedly executes a test and set instruction in an attempt to change the �ag
from false to true� thereby acquiring the lock� A processor releases the lock by setting it to false�

The principal shortcoming of the test and set lock is contention for the �ag� Each waiting
processor accesses the single shared �ag as frequently as possible� using relatively expensive read�
modify�write �fetch and �� instructions� The result is degraded performance� not only of the
memory bank in which the lock resides� but also of the processor�memory interconnection network
and� in a distributed shared�memory machine� the processor that owns the memory bank �as a
result of stolen bus cycles��

Fetch and � instructions can be particularly expensive on cache�coherent multiprocessors� since
each execution of such an instruction may cause many remote invalidations� To reduce this over�
head� the test and set lock can be modi
ed to use a test and set instruction only when a
previous read indicates that the test and set might succeed� This so�called test�and�test and �

set technique ��� ensures that waiting processors poll with read requests during the time that a
lock is held� Once the lock becomes available� some fraction of the waiting processors detect that
the lock is free and perform a test and set operation� exactly one of which succeeds� but each of
which causes remote invalidations on a cache�coherent machine�

The total amount of network tra�c caused by busy�waiting on a test and set lock can be
reduced further by introducing delay on each processor between consecutive probes of the lock�
The simplest approach employs a constant delay� more elaborate schemes use some sort of backo�
on unsuccessful probes� Anderson �� reports the best performance with exponential backo�� our
experiments con
rm this result� Pseudo�code for a test and set lock with exponential backo�
appears in algorithm �� Test and set su�ces when using a backo� scheme� test�and�test and �

set is not necessary�

�

type lock � �unlocked� locked�

procedure acquire�lock �L � �lock�

delay � integer �� �

while test�and�set �L� � locked �� returns old value

pause �delay� �� consume this many units of time

delay �� delay 	

procedure release�lock �L � �lock�

lock� �� unlocked

Algorithm �� Simple test and set lock with exponential backo��

��� The Ticket Lock

In a test�and�test and set lock� the number of read�modify�write operations is substantially less
than for a simple test and set lock� but still potentially large� Speci
cally� it is possible for every
waiting processor to perform a test and set operation every time the lock becomes available�
even though only one can actually acquire the lock� We can reduce the number of fetch and �
operations to one per lock acquisition with what we call a ticket lock� At the same time� we
can ensure FIFO service by granting the lock to processors in the same order in which they
rst
requested it� A ticket lock is fair in a strong sense� it eliminates the possibility of starvation�

A ticket lock consists of two counters� one containing the number of requests to acquire the lock�
and the other the number of times the lock has been released� A processor acquires the lock by
performing a fetch and increment operation on the request counter and waiting until the result
�its ticket� is equal to the value of the release counter� It releases the lock by incrementing the
release counter� In the terminology of Reed and Kanodia ���� a ticket lock corresponds to the
busy�wait implementation of a semaphore using an eventcount and a sequencer� It can also be
thought of as an optimization of Lamport�s bakery lock ���� which was designed for fault�tolerance
rather than performance� Instead of spinning on the release counter� processors using a bakery lock
repeatedly examine the tickets of their peers�

Though it probes with read operations only �and thus avoids the overhead of unnecessary inval�
idations in coherent cache machines�� the ticket lock still causes substantial memory and network
contention through polling of a common location� As with the test and set lock� this contention
can be reduced by introducing delay on each processor between consecutive probes of the lock� In
this case� however� exponential backo� is clearly a bad idea� Since processors acquire the lock in
FIFO order� overshoot in backo� by the
rst processor in line will delay all others as well� causing
them to back o� even farther� Our experiments suggest that a reasonable delay can be determined
by using information not available with a test and set lock� namely� the number of processors
already waiting for the lock� The delay can be computed as the di�erence between a newly�obtained
ticket and the current value of the release counter�

Delaying for an appropriate amount of time requires an estimate of how long it will take each
processor to execute its critical section and pass the lock to its successor� If this time is known
exactly� it is in principle possible to acquire the lock with only two probes� one to determine
the number of processors already in line �if any�� and another �if necessary� to verify that one�s
predecessor in line has
nished with the lock� This sort of accuracy is not likely in practice� however�
since critical sections do not in general take identical� constant amounts of time� Moreover� delaying

�

proportional to the expected average time to hold the lock is risky� if the processors already in
line average less than the expected amount the waiting processor will delay too long and slow the
entire system� A more appropriate constant of proportionality for the delay is the minimum time
that a processor can hold the lock� Pseudo�code for a ticket lock with proportional backo� appears
in algorithm �� It assumes that the new ticket and now serving counters are large enough to
accommodate the maximum number of simultaneous requests for the lock�

type lock � record

next�ticket � unsigned integer �� �

now�serving � unsigned integer �� �

procedure acquire�lock �L � �lock�

my�ticket � unsigned integer �� fetch�and�increment ��L�next�ticket�

�� returns old value� arithmetic overflow is harmless

loop

pause �my�ticket L�now�serving�

�� consume this many units of time

�� on most machines� subtraction works correctly despite overflow

if L�now�serving � my�ticket

return

procedure release�lock �L � �lock�

L�now�serving �� L�now�serving � �

Algorithm �� Ticket lock with proportional backo��

��� Array�Based Queuing Locks

Even using a ticket lock with proportional backo�� it is not possible to obtain a lock with an expected
constant number of network transactions� due to the unpredictability of the length of critical
sections� Anderson �� and Graunke and Thakkar ��� have proposed locking algorithms that achieve
the constant bound on cache�coherent multiprocessors that support atomic fetch and increment

or fetch and store� respectively� The trick is for each processor to use the atomic operation to
obtain the address of a location on which to spin� Each processor spins on a di�erent location� in
a di�erent cache line� Anderson�s experiments indicate that his queuing lock outperforms a test �

and set lock with exponential backo� on the Sequent Symmetry when more than six processors
are competing for access� Graunke and Thakkar�s experiments indicate that their lock outperforms
a test and set lock on the same machine when more than three processors are competing�

Pseudo�code for Anderson�s lock appears in algorithm ��� Graunke and Thakkar�s lock appears
in algorithm �� The likely explanation for the better performance of Graunke and Thakkar�s lock is
that fetch and store is supported directly in hardware on the Symmetry� fetch and add is not�
To simulate fetch and add� Anderson protected his queue�based lock with an outer test and set

lock� This outer lock �not shown in algorithm �� introduces additional overhead and can cause
contention when the critical section protected by the queue�based lock is shorter than the time
required to acquire and release the outer lock� In this case� competing processors spend their time
spinning on the outer test and set lock rather than the queue�based lock�

�Anderson�s original pseudo�code did not address the issue of over�ow� which causes his algorithm to fail unless
numprocs � �k � Our variant of his algorithm addresses this problem�

�

type lock � record

slots � array ����numprocs �� of �has�lock� must�wait�

�� �has�lock� must�wait� must�wait� ���� must�wait�

�� each element of slots should lie in a different memory module

�� or cache line

next�slot � integer �� �

�� parameter my�place� below� points to a private variable

�� in an enclosing scope

procedure acquire�lock �L � �lock� my�place � �integer�

my�place� �� fetch�and�increment ��L�next�slot�

�� returns old value

if my�place� mod numprocs � �

atomic�add ��L�next�slot� numprocs�

�� avoid problems with overflow� return value ignored

my�place� �� my�place� mod numprocs

repeat while L�slots�my�place�� � must�wait �� spin

L�slots�my�place�� �� must�wait �� init for next time

procedure release�lock �L � �lock� my�place � �integer�

L�slots��my�place� � �� mod numprocs� �� has�lock

Algorithm �� Anderson�s array�based queuing lock�

type lock � record

slots � array ����numprocs �� of Boolean �� true

�� each element of slots should lie in a different memory module

�� or cache line

tail � record

who�was�last � �Boolean �� �

this�means�locked � Boolean �� false

�� this�means�locked is a onebit quantity�

�� who�was�last points to an element of slots�

�� if all elements lie at even addresses� this tail �record�

�� can be made to fit in one word

processor private vpid � integer �� a unique virtual processor index

procedure acquire�lock �L � �lock�

�who�is�ahead�of�me � �Boolean� what�is�locked � Boolean�

�� fetch�and�store ��L�tail� ��slots�vpid�� slots�vpid���

repeat while who�is�ahead�of�me� � what�is�locked

procedure release�lock �L � �lock�

L�slots�vpid� �� not L�slots�vpid�

Algorithm �� Graunke and Thakkar�s array�based queuing lock�

�

Neither Anderson nor Graunke and Thakkar included the ticket lock in their experiments� In
qualitative terms� both the ticket lock �with proportional backo�� and the array�based queuing
locks guarantee FIFO ordering of requests� Both the ticket lock and Anderson�s lock use an atomic
fetch and increment instruction� The ticket lock with proportional backo� is likely to require
more network transactions on a cache�coherent multiprocessor� but fewer on a multiprocessor with�
out coherently cached shared variables� The array�based queuing locks require space per lock linear
in the number of processors� whereas the ticket lock requires only a small constant amount of
space�� We provide quantitative comparisons of the locks� performance in section ����

��� A New List�Based Queuing Lock

We have devised a new mechanism called the MCS lock �after our initials� that

� guarantees FIFO ordering of lock acquisitions�

� spins on locally�accessible �ag variables only�

� requires a small constant amount of space per lock� and

� works equally well �requiring only O��� network transactions per lock acquisition� on machines
with and without coherent caches�

The
rst of these advantages is shared with the ticket lock and the array�based queuing locks�
but not with the test and set lock� The third is shared with the test and set and ticket locks�
but not with the array�based queuing locks� The fourth advantage is in large part a consequence
of the second� and is unique to the MCS lock�

Our lock was inspired by the QOLB �Queue On Lock Bit� primitive proposed for the cache
controllers of the Wisconsin Multicube ���� but is implemented entirely in software� It requires
an atomic fetch and store �swap� instruction� and bene
ts from the availability of compare �

and swap� Without compare and swap we lose the guarantee of FIFO ordering and introduce the
theoretical possibility of starvation� though lock acquisitions are likely to remain very nearly FIFO
in practice�

Pseudo�code for our lock appears in algorithm �� Every processor using the lock allocates a
qnode record containing a queue link and a Boolean �ag� Each processor employs one additional
temporary variable during the acquire lock operation� Processors holding or waiting for the lock
are chained together by the links� Each processor spins on its own locally�accessible �ag� The lock
itself contains a pointer to the qnode record for the processor at the tail of the queue� or a nil if
the lock is not held� Each processor in the queue holds the address of the record for the processor
behind it�the processor it should resume after acquiring and releasing the lock� Compare and swap

enables a processor to determine whether it is the only processor in the queue� and if so remove
itself correctly� as a single atomic action� The spin in acquire lock waits for the lock to become
free� The spin in release lock compensates for the timing window between the fetch and store

and the assignment to predecessor�	next in acquire lock� Both spins are local�

Figure �� parts �a� through �e�� illustrates a series of acquire lock and release lock oper�
ations� The lock itself is represented by a box containing an L�� The other rectangles are qnode

�At �rst glance� one might suspect that the �ag bits of the Graunke and Thakkar lock could be allocated on a
per�processor basis� rather than a per�lock basis� Once a processor releases a lock� however� it cannot use its bit for
anything else until some other processor has acquired the lock it released�

�

type qnode � record

next � �qnode

locked � Boolean

type lock � �qnode

�� parameter I� below� points to a qnode record allocated

�� �in an enclosing scope� in shared memory locallyaccessible

�� to the invoking processor

procedure acquire�lock �L � �lock� I � �qnode�

I�next �� nil

predecessor � �qnode �� fetch�and�store �L� I�

if predecessor �� nil �� queue was nonempty

I�locked �� true

predecessor�next �� I

repeat while I�locked �� spin

procedure release�lock �L � �lock� I� �qnode�

if I�next � nil �� no known successor

if compare�and�swap �L� I� nil�

return

�� compare�and�swap returns true iff it swapped

repeat while I�next � nil �� spin

I�next�locked �� false

Algorithm �� The MCS list�based queuing lock�

records� A box with a slash through it represents a nil pointer� Non�nil pointers are directed
arcs� In �a� the lock is free� In �b�� processor � has acquired the lock� It is running �indicated by
the R��� thus its locked �ag is irrelevant �indicated by putting the R� in parentheses�� In �c�� two
more processors have entered the queue while the lock is still held by processor �� They are blocked
spinning on their locked �ags �indicated by the B�s�� In �d�� processor � has completed� and has
changed the locked �ag of processor � so that it is now running� In �e�� processor � has completed�
and has similarly unblocked processor �� If no more processors enter the queue in the immediate
future� the lock will return to the situation in �a� when processor � completes its critical section�

Alternative code for the release lock operation� without compare and swap� appears in al�
gorithm �� Like the code in algorithm �� it spins on processor�speci
c� locally�accessible memory
locations only� requires constant space per lock� and requires only O��� network transactions re�
gardless of whether the machine provides coherent caches� Its disadvantages are extra complexity
and the loss of strict FIFO ordering�

Parts �e� through �h� of
gure � illustrate the subtleties of the alternative code for release �

lock� In the original version of the lock� compare and swap ensures that updates to the tail of the
queue happen atomically� There are no processors waiting in line if and only if the tail pointer
of the queue points to the processor releasing the lock� Inspecting the processor�s next pointer is
solely an optimization� to avoid unnecessary use of a comparatively expensive atomic instruction�
Without compare and swap� inspection and update of the tail pointer cannot occur atomically�
When processor � is ready to release its lock� it assumes that no other processor is in line if its next
pointer is nil� In other words� it assumes that the queue looks the way it does in �e�� �It could

�

7-B

6(R)

5-B

4-B

3(R)

3-B

2(R)

3-B

2-B

1(R)

1(R)

L(e)

(d) L

(b) L

(a) L

L(c)

L3(E)

4-B

5-B

(e’)

3(E) L

4-B

5-B

(f)

(g) L3(E)

4-B

5-B

6(R)

7-B

L(h)

Figure �� Pictorial example of MCS locking protocol in the presence of competition�

�

procedure release�lock �L � �lock� I � �qnode�

if I�next � nil �� no known successor

old�tail � �qnode �� fetch�and�store �L� nil�

if old�tail � I �� I really had no successor

return

�� we have accidentally removed some processor�s� from the queue�

�� we need to put them back

usurper �� fetch�and�store �L� old�tail�

repeat while I�next � nil �� wait for pointer to victim list

if usurper �� nil

�� somebody got into the queue ahead of our victims

usurper�next �� I�next �� link victims after the last usurper

else

I�next�locked �� false

else

I�next�locked �� false

Algorithm �� Code for release lock� without compare and swap�

equally well make this assumption after inspecting the tail pointer and
nding that it points to
itself� but the next pointer is local and the tail pointer is probably not�� This assumption may be
incorrect because other processors may have linked themselves into the queue between processor ��s
inspection and its subsequent update of the tail� The queue may actually be in the state shown in
�e��� with one or more processors in line behind processor �� the
rst of which has yet to update ��s
next pointer� �The E� in parentheses on processor � indicates that it is exiting its critical section�
the value of its locked �ag is irrelevant��

When new processors enter the queue during this timing window� the data structure temporarily
takes on the form shown in �f�� The return value of processor ��s
rst fetch and store in release �

lock �shown in the extra dotted box� is the tail pointer for a list of processors that have accidentally
been linked out of the queue� By waiting for its next pointer to become non�nil� processor � obtains
a head pointer for this �victim	 list� It can patch the victim processors back into the queue� but
before it does so additional processors ��usurpers	� may enter the queue with the
rst of them
acquiring the lock� as shown in �g�� Processor � puts the tail of the victim list back into the tail
pointer of the queue with a fetch and store� If the return value of this fetch and store is nil�
processor � unblocks its successor� Otherwise� as shown in �h�� processor � inserts the victim list
behind the usurpers by writing its next pointer �the head of the victim list� into the next pointer
of the tail of the usurper list� In either case� the structure of the queue is restored�

To demonstrate formal correctness of the MCS lock we can prove mutual exclusion� deadlock
freedom� and fairness for a version of the algorithm in which the entire acquire lock and release �

lock procedures comprise atomic actions� broken only when a processor waits �in acquire lock�
for the lock to become available� We can then re
ne this algorithm through a series of correctness�
preserving transformations into the code in algorithm �� The
rst transformation breaks the atomic
action of acquire lock in two� and introduces auxiliary variables that indicate when a processor
has modi
ed the tail pointer of the queue to point at its qnode record� but has not yet modi
ed
its predecessor�s next pointer� To preserve the correctness proof in the face of this transformation�
we ��� relax the invariants on queue structure to permit a non�tail processor to have a nil next
pointer� so long as the auxiliary variables indicate that its successor is in the timing window� and ���

��

introduce a spin in release lock to force the processor to wait for its next pointer to be updated
before using it� The second transformation uses proofs of interference freedom to move statements
outside of the three atomic actions� The action containing the assignment to a predecessor�s
next pointer can then be executed without explicit atomicity� it inspects or modi
es only one
variable that is modi
ed or inspected in any other process� The other two actions are reduced
to the functionality of fetch and store and compare and swap� The details of this argument are
straightforward but lengthy �they appear as an appendix to the technical report version of this
paper ����� we
nd the informal description and pictures above more intuitively convincing�

� Barriers

Barriers have received a great deal of attention in the literature� more so even than spin locks�
and the many published algorithms di�er signi
cantly in notational conventions and architectural
assumptions� We present
ve di�erent barriers in this section� four from the literature and one
of our own design� We have modi
ed some of the existing barriers to increase their locality of
reference or otherwise improve their performance� we note where we have done so�

��� Centralized Barriers

In a centralized implementation of barrier synchronization� each processor updates a small amount
of shared state to indicate its arrival� and then polls that state to determine when all of the
processors have arrived� Once all of the processors have arrived� each processor is permitted to
continue past the barrier� Like the test and set spin lock� centralized barriers are of uncertain
origin� Essentially equivalent algorithms have undoubtedly been invented by numerous individuals�

Most barriers are designed to be used repeatedly �to separate phases of a many�phase algorithm�
for example�� In the most obvious formulation� each instance of a centralized barrier begins and
ends with identical values for the shared state variables� Each processor must spin twice per
instance� once to ensure that all processors have left the previous barrier� and again to ensure
that all processors have arrived at the current barrier� Without the
rst spin� it is possible for a
processor to mistakenly pass through the current barrier because of state information being used
by processors still leaving the previous barrier� Two barrier algorithms proposed by Tang and Yew
�the
rst algorithm appears in ��� Algorithm ���� and ��� p� ��� the second algorithm appears in
��� Algorithm ����� su�er from this type of �aw�

We can reduce the number of references to the shared state variables� and simultaneously
eliminate one of the two spinning episodes� by �reversing the sense	 of the variables �and leaving
them with di�erent values� between consecutive barriers ����� The resulting code is shown in
algorithm �� Arriving processors decrement count and then wait until sense has a di�erent value
than it did in the previous barrier� The last arriving processor resets count and reverses sense�
Consecutive barriers cannot interfere with each other because all operations on count occur before
sense is toggled to release the waiting processors�

Lubachevsky ��� presents a similar barrier algorithm that uses two shared counters and a
processor private two�state �ag� The private �ag selects which counter to use� consecutive barriers
use alternate counters� Another similar barrier can be found in library packages distributed by
Sequent Corporation for the Symmetry multiprocessor� Arriving processors read the current value

�A similar technique appears in ��� p� ����� where it is credited to Isaac Dimitrovsky�

��

shared count � integer �� P

shared sense � Boolean �� true

processor private local�sense � Boolean �� true

procedure central�barrier

local�sense �� not local�sense �� each processor toggles its own sense

if fetch�and�decrement ��count� � �

count �� P

sense �� local�sense �� last processor toggles global sense

else

repeat until sense � local�sense

Algorithm �� A sense�reversing centralized barrier�

of a shared epoch number� update a shared counter� and spin until the epoch number changes� The
last arriving processor re�initializes the counter and advances the epoch number�

The potential drawback of centralized barriers is the spinning that occurs on a single� shared
location� Because processors do not in practice arrive at a barrier simultaneously� the number of
busy�wait accesses will in general be far above the minimum�� On broadcast�based cache�coherent
multiprocessors� these accesses may not be a problem� The shared �ag or sense variable is replicated
into the cache of every waiting processor� so subsequent busy�wait accesses can be satis
ed without
any network tra�c� This shared variable is written only when the barrier is achieved� causing a
single broadcast invalidation of all cached copies�� All busy�waiting processors then acquire the
new value of the variable and are able to proceed� On machines without coherent caches� however�
or on machines with directory�based caches without broadcast� busy�wait references to a shared
location may generate unacceptable levels of memory and interconnect contention�

To reduce the interconnection network tra�c caused by busy waiting on a barrier �ag� Agarwal
and Cherian �� investigated the utility of adaptive backo� schemes� They arranged for processors
to delay between successive polling operations for geometrically�increasing amounts of time� Their
results indicate that in many cases such exponential backo� can substantially reduce the amount
of network tra�c required to achieve a barrier� However� with this reduction in network tra�c
often comes an increase in latency at the barrier� Processors in the midst of a long delay do not
immediately notice when all other processors have arrived� Their departure from the barrier is
therefore delayed� which in turn delays their arrival at subsequent barriers�

Agarwal and Cherian also note that for systems with more than ��� processors� for a range
of arrival intervals and delay ratios� backo� strategies are of limited utility for barriers that spin
on a single �ag ��� In such large�scale systems� the number of network accesses per processor
increases sharply as collisions in the interconnection network cause processors to repeat accesses�
These observations imply that centralized barrier algorithms will not scale well to large numbers of
processors� even using adaptive backo� strategies� Our experiments �see section ���� con
rm this
conclusion�

�Commenting on Tang and Yew�s barrier algorithm algorithm ��� in ������ Agarwal and Cherian ��� show that on
a machine in which contention causes memory accesses to be aborted and retried� the expected number of memory
accesses initiated by each processor to achieve a single barrier is linear in the number of processors participating�
even if processors arrive at the barrier at approximately the same time�

�This di�ers from the situation in simple spin locks� where a waiting processor can expect to su�er an invalidation
for every contending processor that acquires the lock before it�

��

type node � record

k � integer �� fanin of this node

count � integer �� initialized to k

locksense � Boolean �� initially false

parent � �node �� pointer to parent node� nil if root

shared nodes � array ����P�� of node

�� each element of nodes allocated in a different memory module or cache line

processor private sense � Boolean �� true

processor private mynode � �node �� my group�s leaf in the combining tree

procedure combining�barrier

combining�barrier�aux �mynode� �� join the barrier

sense �� not sense �� for next barrier

procedure combining�barrier�aux �nodepointer � �node�

with nodepointer� do

if fetch�and�decrement ��count� � � �� last one to reach this node

if parent �� nil

combining�barrier�aux �parent�

count �� k �� prepare for next barrier

locksense �� not locksense �� release waiting processors

repeat until locksense � sense

Algorithm �� A software combining tree barrier with optimized wakeup�

��� The Software Combining Tree Barrier

To reduce hot�spot contention for synchronization variables� Yew� Tzeng� and Lawrie ��� have
devised a data structure known as a software combining tree� Like hardware combining in a multi�
stage interconnection network ���� a software combining tree serves to collect multiple references to
the same shared variable into a single reference whose e�ect is the same as the combined e�ect of the
individual references� A shared variable that is expected to be the target of multiple concurrent
accesses is represented as a tree of variables� with each node in the tree assigned to a di�erent
memory module� Processors are divided into groups� with one group assigned to each leaf of the
tree� Each processor updates the state in its leaf� If it discovers that it is the last processor in its
group to do so� it continues up the tree� updating its parent to re�ect the collective updates to the
child� Proceeding in this fashion� late�coming processors eventually propagate updates to the root
of the tree�

Combining trees are presented as a general technique that can be used for several purposes� At
every level of the tree� atomic instructions are used to combine the arguments to write operations or
to split the results of read operations� In the context of this general framework� Tang and Yew ���
describe how software combining trees can be used to implement a barrier� Writes into one tree are
used to determine that all processors have reached the barrier� reads out of a second are used to
allow them to continue� Algorithm � shows an optimized version of the combining tree barrier� We
have used the sense�reversing technique to avoid overlap of successive barriers without requiring two
spinning episodes per barrier� and have replaced the atomic instructions of the second combining
tree with simple reads� since no real information is returned�

��

Each processor begins at a leaf of the combining tree� and decrements its leaf�s count variable�
The last processor to reach each node in the tree continues up to the next level� The processor
that reaches the root of the tree begins a reverse wave of updates to locksense �ags� As soon as
it awakes� each processor retraces its path through the tree unblocking its siblings at each node
along the path� Simulations by Yew� Tzeng� and Lawrie ��� show that a software combining
tree can signi
cantly decrease memory contention and prevent tree saturation �a form of network
congestion that delays the response of the network to large numbers of references ���� in multistage
interconnection networks by distributing accesses across the memory modules of the machine�

The principal shortcoming of the combining tree barrier� from our point of view� is that is
requires processors to spin on memory locations that cannot be statically determined� and on
which other processors also spin� On broadcast�based cache�coherent machines� processors may
obtain local copies of the tree nodes on which they spin� but on other machines �including the Cedar
machine which Yew� Tzeng� and Lawrie simulated�� processors will spin on remote locations� leading
to unnecessary contention for interconnection network bandwidth� In section ��� we present a new
tree�based barrier algorithm in which each processor spins on its own unique location� statically
determined and thus presumably locally accessible� Our algorithm uses no atomic instructions
other than read and write� and performs the minimum possible number of operations across the
processor�memory interconnect�

��� The Dissemination Barrier

Brooks �� has proposed a symmetric �butter�y barrier�	 in which processors participate as equals�
performing the same operations at each step� Each processor in a butter�y barrier participates
in a sequence of � log� P pairwise synchronizations� In round k �counting from zero�� processor i
synchronizes with processor i��k � where � is the exclusive or operator� If the number of processors
is not a power of �� then existing processors stand in for the missing ones� thereby participating in
as many as �dlog� Pe pairwise synchronizations�

Hensgen� Finkel� and Manber ��� describe a �dissemination barrier	 that improves on Brooks�s
algorithm by employing a more e�cient pattern of synchronizations and by reducing the cost of
each synchronization� Their barrier takes its name from an algorithm developed to disseminate
information among a set of processes� In round k� processor i signals processor �i � �k� mod P

�Synchronization is no longer pairwise�� This pattern does not require existing processes to stand
in for missing ones� and therefore requires only dlog� Pe synchronization operations on its critical
path� regardless of P � Reference ��� contains a more detailed description of the synchronization
pattern and a proof of its correctness�

For each signalling operation of the dissemination barrier� Hensgen� Finkel� and Manber use
alternating sets of variables in consecutive barrier episodes� avoiding interference without requiring
two separate spins in each operation� They also use sense reversal to avoid resetting variables after
every barrier� The
rst change also serves to eliminate remote spinning� The authors motivate their
algorithmic improvements in terms of reducing the number of instructions executed in the course
of a signalling operation� but we consider the elimination of remote spinning to be an even more
important bene
t� The �ags on which each processor spins are statically determined� and no two
processors spin on the same �ag� Each �ag can therefore be located near the processor that reads
it� leading to local�only spinning on any machine with local shared memory or coherent caches�

Algorithm � presents the dissemination barrier� The parity variable controls the use of alter�
nating sets of �ags in successive barrier episodes� On a machine with distributed shared memory

��

type flags � record

myflags � array ������ of array ����LogP�� of Boolean

partnerflags � array ������ of array ����LogP�� of �Boolean

processor private parity � integer �� �

processor private sense � Boolean �� true

processor private localflags � �flags

shared allnodes � array ����P�� of flags

�� allnodes�i� is allocated in shared memory

�� locally accessible to processor i

�� on processor i� localflags points to allnodes�i�

�� initially allnodes�i��myflags�r��k� is false for all i� r� k

�� if j � �i�
�k� mod P� then for r � �� ��

�� allnodes�i��partnerflags�r��k� points to allnodes�j��myflags�r��k�

procedure dissemination�barrier

for instance � integer �� � to LogP�

localflags��partnerflags�parity��instance�� �� sense

repeat until localflags��myflags�parity��instance� � sense

if parity � �

sense �� not sense

parity �� � parity

Algorithm �� The scalable� distributed dissemination barrier with only local spinning�

and without coherent caches� the shared allnodes array would be scattered statically across the
memory banks of the machine� or replaced by a scattered set of variables�

��� Tournament Barriers

Hensgen� Finkel� and Manber ��� and Lubachevsky ��� have also devised tree�style �tournament	
barriers� The processors involved in a tournament barrier begin at the leaves of a binary tree� much
as they would in a combining tree of fan�in two� One processor from each node continues up the
tree to the next �round	 of the tournament� At each stage� however� the �winning	 processor is
statically determined� and there is no need for fetch and � instructions�

In round k �counting from zero� of Hensgen� Finkel� and Manber�s barrier� processor i sets a
�ag awaited by processor j� where i � �k �mod �k��� and j ! i� �k� Processor i then drops out
of the tournament and busy waits on a global �ag for notice that the barrier has been achieved�
Processor j participates in the next round of the tournament� A complete tournament consists of
dlog� Pe rounds� Processor � sets a global �ag when the tournament is over�

Lubachevsky ��� presents a CREW �concurrent read� exclusive write� tournament barrier that
uses a global �ag for wakeup� similar to that of Hensgen� Finkel� and Manber� He also presents an
EREW �exclusive read� exclusive write� tournament barrier in which each processor spins on sepa�
rate �ags in a binary wakeup tree� similar to wakeup in a binary combining tree using algorithm ��

Because all processors busy wait on a single global �ag� Hensgen� Finkel� and Manber�s tour�
nament barrier and Lubachevsky�s CREW barrier are appropriate for multiprocessors that use
broadcast to maintain cache consistency� They will cause heavy interconnect tra�c� however� on

��

machines that lack coherent caches� or that limit the degree of cache line replication� Lubachevsky�s
EREW tournament could be used on any multiprocessor with coherent caches� including those that
use limited�replication directory�based caching without broadcast� Unfortunately� in Lubachevsky�s
EREW barrier algorithm� each processor spins on a non�contiguous set of elements in an array� and
no simple scattering of these elements will su�ce to eliminate spinning�related network tra�c on
a machine without coherent caches�

By modifying Hensgen� Finkel� and Manber�s tournament barrier to use a wakeup tree� we have
constructed an algorithm in which each processor spins on its own set of contiguous� statically allo�
cated �ags �see algorithm ���� The resulting code is able to avoid spinning across the interconnection
network� both on cache�coherent machines and on distributed shared memory multiprocessors� In
addition to employing a wakeup tree� we have modi
ed Hensgen� Finkel� and Manber�s algorithm
to use sense reversal to avoid re�initializing �ag variables in each round� These same modi
cations
have been discovered independently by Craig Lee of Aerospace Corporation ����

Hensgen� Finkel� and Manber provide performance
gures for the Sequent Balance �a bus�based�
cache�coherent multiprocessor�� comparing their tournament algorithm against the dissemination
barrier� as well as Brooks�s butter�y barrier� They report that the tournament barrier outperforms
the dissemination barrier when P � ��� The dissemination barrier requires O�P logP � network
transactions� while the tournament barrier requires only O�P �� Beyond �� processors� the addi�
tional factor of log P in bus tra�c for the dissemination barrier dominates the higher constant
of the tournament barrier� However� on scalable multiprocessors with multi�stage interconnection
networks� many of the network transactions required by the dissemination barrier algorithm can
proceed in parallel without interference�

��� A New Tree�Based Barrier

We have devised a new barrier algorithm that

� spins on locally�accessible �ag variables only�

� requires only O�P � space for P processors�

� performs the theoretical minimum number of network transactions ��P � �� on machines
without broadcast� and

� performs O�logP � network transactions on its critical path�

To synchronize P processors� our barrier employs a pair of P �node trees� Each processor is
assigned a unique tree node� which is linked into an arrival tree by a parent link� and into a wakeup
tree by a set of child links� It is useful to think of these as separate trees� because the fan�in in
the arrival tree di�ers from the fan�out in the wakeup tree� We use a fan�in of � ��� because it
produced the best performance in Yew� Tzeng� and Lawrie�s experiments with software combining�
and ��� because the ability to pack four bytes in a word permits an optimization on many machines
in which a parent can inspect status information for all of its children simultaneously at the same
cost as inspecting the status of only one� We use a fan�out of � because it results in the shortest
critical path to resume P spinning processors for a tree of uniform degree� To see this� note that in
a p�node tree with fan�out k �and approximately logk p levels�� the last processor to awaken will be
the kth child of the kth child � � � of the root� Because k� � other children are awoken
rst at each
level� the last processor awakes at the end of a serial chain of approximately k logk p awakenings�

��

type round�t � record

role � �winner� loser� bye� champion� dropout�

opponent � �Boolean

flag � Boolean

shared rounds � array ����P������LogP� of round�t

�� row vpid of rounds is allocated in shared memory

�� locally accessible to processor vpid

processor private sense � Boolean �� true

processor private vpid � integer �� a unique virtual processor index

�� initially

�� rounds�i��k��flag � false for all i�k

�� rounds�i��k��role �

�� winner if k � �� i mod
�k � �� i �
��k�� � P� and
�k � P

�� bye if k � �� i mod
�k � �� and i �
��k�� �� P

�� loser if k � � and i mod
�k �
��k��

�� champion if k � �� i � �� and
�k �� P

�� dropout if k � �

�� unused otherwise� value immaterial

�� rounds�i��k��opponent points to

�� rounds�i
��k����k��flag if rounds�i��k��role � loser

�� rounds�i�
��k����k��flag if rounds�i��k��role � winner or champion

�� unused otherwise� value immaterial

procedure tournament�barrier

round � integer �� �

loop �� arrival

case rounds�vpid��round��role of

loser�

rounds�vpid��round��opponent� �� sense

repeat until rounds�vpid��round��flag � sense

exit loop

winner�

repeat until rounds�vpid��round��flag � sense

bye� �� do nothing

champion�

repeat until rounds�vpid��round��flag � sense

rounds�vpid��round��opponent� �� sense

exit loop

dropout� �� impossible

round �� round � �

loop �� wakeup

round �� round �

case rounds�vpid��round��role of

loser� �� impossible

winner�

rounds�vpid��round��opponent� �� sense

bye� �� do nothing

champion� �� impossible

dropout�

exit loop

sense �� not sense

Algorithm ��� A scalable� distributed tournament barrier with only local spinning�

��

and this expression is minimized for k ! ��� A processor does not examine or modify the state
of any other nodes except to signal its arrival at the barrier by setting a �ag in its parent�s node
and� when noti
ed by its parent that the barrier has been achieved� to notify each of its children
by setting a �ag in each of their nodes� Each processor spins only on state information in its own
tree node� To achieve a barrier� each processor executes the code shown in algorithm ���

Data structures for the tree barrier are initialized so that each node�s parentpointer variable
points to the appropriate childnotready �ag in the node�s parent� and the childpointers vari�
ables point to the parentsense variables in each of the node�s children� Child pointers of leaves
and the parent pointer of the root are initialized to reference pseudo�data� The havechild �ags
indicate whether a parent has a particular child or not� Initially� and after each barrier episode�
each node�s childnotready �ags are set to the value of the node�s respective havechild �ags�

Upon arrival at a barrier� a processor tests to see if the childnotready �ag is clear for each of
its children� For leaf nodes� these �ags are always clear� so deadlock cannot result� After a node�s
associated processor sees that its childnotready �ags are clear� it immediately re�initializes them
for the next barrier� Since a node�s children do not modify its childnotready �ags again until
they arrive at the next barrier� there is no potential for con�icting updates� After all of a node�s
children have arrived� the node�s associated processor clears its childnotready �ag in the node�s
parent� All processors other than the root then spin on their locally�accessible parentsense �ag�
When the root node�s associated processor arrives at the barrier and notices that all of the root
node�s childnotready �ags are clear� then all of the processors are waiting at the barrier� The
processor at the root node toggles the parentsense �ag in each of its children to release them from
the barrier� At each level in the tree� newly released processors release all of their children before
leaving the barrier� thus ensuring that all processors are eventually released� Consecutive barrier
episodes do not interfere since� as described earlier� the childnotready �ags used during arrival
are re�initialized before wakeup occurs�

Our tree barrier achieves the theoretical lower bound on the number of network transactions
needed to achieve a barrier on machines that lack broadcast and that distinguish between local
and remote memory� At least P � � processors must signal their arrival to some other processor�
requiring P � � network transactions� and must then be informed of wakeup� requiring another
P � � network transactions� The length of the critical path in our algorithm is proportional to
dlog� Pe � dlog� Pe� The
rst term is the time to propagate arrival up to the root� and the second
term is the time to propagate wakeup back down to all of the leaves� On a machine with coherent
caches and unlimited replication� we could replace the wakeup phase of our algorithm with a spin
on a global �ag� We explore this alternative on the Sequent Symmetry in section ����

� Performance Measurements

We have measured the performance of various spin lock and barrier algorithms on the BBN But�
ter�y �� a distributed shared memory multiprocessor� and the Sequent Symmetry Model B� a

�Alex Sch�a�er and Paul Dietz have pointed out that better performance could be obtained in the wakeup tree by
assigning more children to processors near the root� For example� if after processor a awakens processor b it takes
them the same amount of time to prepare to awaken others� then we can cut the critical path roughly in half by
having each processor i awaken processors i� �j � i� �j��� i� �j��� etc�� where j � blog� ic� Then with processor

acting as the root� after a serial chain of t awakenings there are �t processors active� Unfortunately� the obvious
way to have a processor awaken more than a constant number of children involves a loop whose additional overhead
partially negates the reduction in tree height� Experiments with this option not presented in section ����� resulted
in only about a �� performance improvement for p � �
�

��

type treenode � record

parentsense � Boolean

parentpointer � �Boolean

childpointers � array ������ of �Boolean

havechild � array ������ of Boolean

childnotready � array ������ of Boolean

dummy � Boolean �� pseudodata

shared nodes � array ����P�� of treenode

�� nodes�vpid� is allocated in shared memory

�� locally accessible to processor vpid

processor private vpid � integer �� a unique virtual processor index

processor private sense � Boolean

�� on processor i� sense is initially true

�� in nodes�i��

�� havechild�j� � true if �	i�j � P� otherwise false

�� parentpointer � �nodes�floor��i�������childnotready��i�� mod ���

�� or �dummy if i � �

�� childpointers��� � �nodes�
	i����parentsense� or �dummy if
	i�� �� P

�� childpointers��� � �nodes�
	i�
��parentsense� or �dummy if
	i�
 �� P

�� initially childnotready � havechild and parentsense � false

procedure tree�barrier

with nodes�vpid� do

repeat until childnotready � �false� false� false� false�

childnotready �� havechild �� prepare for next barrier

parentpointer� �� false �� let parent know I�m ready

�� if not root� wait until my parent signals wakeup

if vpid �� �

repeat until parentsense � sense

�� signal children in wakeup tree

childpointers���� �� sense

childpointers���� �� sense

sense �� not sense

Algorithm ��� A scalable� distributed� tree�based barrier with only local spinning�

��

MP

P M

MP

P M

Figure �� The BBN Butter�y ��

cache�coherent� shared�bus multiprocessor� Anyone wishing to reproduce our results or extend our
work to other machines can obtain copies of our source code �assembler for the spin locks� C for
the barriers� via anonymous ftp from titan�rice�edu �directory �public�scalable synch��

��� Hardware Description

BBN Butter�y

The BBN Butter�y � is a shared�memory multiprocessor that can support up to ��� processor
nodes� Each processor node contains an � MHz MC����� that uses ���bit virtual addresses� and
one to four megabytes of memory �one on our machine�� Each processor can access its own memory
directly� and can access the memory of any node through a log��depth switching network �see

gure ��� Transactions on the network are packet�switched and non�blocking� If collisions occur at
a switch node� one transaction succeeds and all of the others are aborted� to be retried at a later
time �in hardware� by the processors that initiated them� In the absence of contention� a remote
memory reference �read� takes about � �s� roughly � times as long as a local reference�

The Butter�y � supports two ���bit atomic operations� fetch and clear then add and fetch �

and clear then xor� Each operation takes three arguments� the address of the ���bit destination
operand� a ���bit mask� and the value of the ���bit source operand� The value of the destination
operand is anded with the one�s complement of the mask� and then added or xored with the source
operand� The resulting value replaces the original value of the destination operand� The previous
value of the destination operand is the return value for the atomic operation� Using these two prim�
itives� one can perform a variety of atomic operations� including fetch and add� fetch and store

�swap�� and fetch and or �which� like swap� can be used to perform a test and set��

Sequent Symmetry

The Sequent Symmetry Model B is a shared�bus multiprocessor that supports up to �� processor
nodes� Each processor node consists of a �� MHz Intel ����� processor equipped with a �� KB

��

MMM

CCCC

PPPP

Figure �� The Sequent Symmetry Model B�

two�way set�associative cache� All caches in the system are kept coherent by snooping on the bus
�see
gure ��� Each cache line is accompanied by a tag that indicates whether the data is replicated
in any other cache� Writes are passed through to the bus only for replicated cache lines� invalidating
all other copies� Otherwise the caches are write�back�

The Symmetry provides an atomic fetch and store operation� and allows various logical and
arithmetic operations to be applied atomically as well� Each of these operations can be applied to
any �� �� or � byte quantity� The logical and arithmetic operations do not return the previous value
of the modi
ed location� they merely update the value in place and set the processor�s condition
codes� The condition codes su�ce in certain limited circumstances to determine the state of the
memory prior to the atomic operation �e�g�� to determine when the counter has reached zero
in algorithm ��� but the lack of a genuine return value generally makes the Symmetry�s atomic
instructions signi
cantly less useful than the fetch and � operations of the Butter�y� Neither the
Symmetry nor the Butter�y supports compare and swap�

��� Measurement Technique

Our results were obtained by embedding lock acquisitions or barrier episodes inside a loop and
averaging over a large number of operations� In the spin lock graphs� each data point �P� T �
represents the average time T to acquire and release the lock with P processors competing for
access� On the Butter�y� the average is over ��� lock acquisitions� On the Symmetry� the average
is over ��� lock acquisitions� For an individual test of P processors collectively executing K lock
acquisitions� we required that each processor acquire and release the lock bK�Pc times� In the
barrier graphs� each data point �P� T � represents the average time T for P processors to achieve a
barrier� On both the Symmetry and the Butter�y� the average is over ��� barriers�

When P ! � in the spin lock graphs� T represents the latency on one processor of the acquire �

lock and release lock operations in the absence of competition� When P is moderately large�
T represents the time between successive lock acquisitions on competing processors� This passing
time is smaller than the single�processor latency in almost all cases� because signi
cant amounts of
computation in acquire lock prior to actual acquisition� and in release lock after actual release�
may be overlapped with work on other processors� When P is � or �� T may represent either latency
or passing time� depending on the relative amounts of overlapped and non�overlapped computation�
In some cases �Anderson�s lock� the MCS lock� and the locks incorporating backo�� the value of T
for small values of P may also vary due to di�erences in the actual series of executed instructions�
since code paths may depend on how many other processors are competing for the lock� and on
which operations they have so far performed� In all cases� however� the times plotted in the spin
lock graphs are the numbers that �matter	 for each of the values of P � Passing time is meaningless

��

� �� �� �� �� �� �� �� ��

�

��

���

���

���

���

���

���

���

���

���

���

���

Processors

Time
��s�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

� � � � � � � � � � � � � �

�

� � � � � � � � � � � � ��
�

� � � � � � � � � � � � �

�

�

�

�

�

�

�

�

�

�

test " set

ticket

test " set� linear backo�

anderson

test " set� exp� backo�

ticket� prop� backo�

mcs

Figure �� Performance of spin locks on the Butter�y �empty critical section��

on one processor� and latency is swamped by wait time as soon as P is moderately large�	

Unless otherwise noted� all measurements on the Butter�y were performed with interrupts
disabled� Similarly� on the Symmetry� the tmp affinity�� system call was used to bind processes
to processors for the duration of our experiments� These measures were taken to provide repeatable
timing results�

��� Spin Locks

Figure � shows the performance on the Butter�y of the spin lock algorithms described in section ���

The top curve is a simple test and set lock� which displays the poorest scaling behavior��� As
expected� a ticket lock without backo� is slightly faster� due to polling with a read instead of a
fetch and �� We would expect a test�and�test and set lock to perform similarly� A linear least
squares regression on the timings shows that the time to acquire and release the test and set

	Since T may represent either latency or passing time when more than one processor is competing for a lock� it is
di�cult to factor out overhead due to the timing loop for timing tests with more than one processor� For consistency�
we included loop overhead in all of the average times reported both spin locks and barriers��

�
Measurements were made for all numbers of processors� the tick marks simply di�erentiate between line types�
Graunke and Thakkar�s array�based queuing lock had not yet appeared at the time we conducted our experiments�
Performance of their lock should be qualitatively identical to Anderson�s lock� but with a smaller constant�

��We implement test and set using the hardware primitive fetch and clear then add with a mask that speci�es
to clear the lowest bit� and an addend of �� This operation returns the old value of the lock and leaves the lowest bit
in the lock set�

��

lock increases ��� �s per additional processor� The time for a ticket lock without backo� increases
��� �s per processor�

By analogy with the exponential backo� scheme described in section �� we investigated the e�ect
of having each processor delay between polling operations for a period of time directly proportional
to the number of unsuccessful test and set operations� This change reduces the slope of the
test and set lock graph to ��� �s per processor� but performance degradation is still linear in the
number of competing processors�

The time to acquire and release the test and set lock� the ticket lock without backo�� and
the test and set lock with linear backo� does not actually increase linearly as more processors
compete for the lock� but rather in a piecewise linear fashion� This behavior is a function of the
interconnection network topology and the order in which we add processors to the test� For the
tests shown in
gure �� our Butter�y was con
gured as an �� processor machine with � switch cards
in the
rst column of the interconnection network� supporting �� processors each� Processors were
added to the test in a round robin fashion� one from each card� The breaks in the performance
graph occur as each group of �� processors is added to the test� These are the points at which we
have included � more processors from each switch card�
lling the inputs of a ��input� ��output
switch node on each card� Adding more processors involves a set of previously unused switch nodes�
What we see in the performance graphs is that involving new switch nodes causes behavior that is
qualitatively di�erent from that obtained by including another processor attached to a switch node
already in use� This di�erence is likely related to the fact that additional processors attached to a
switch node already in use add contention in the
rst level of the interconnection network� while
involving new switch nodes adds contention in the second level of the network� In a fully con
gured
machine with ��� processors attached to �� switch cards in the
rst column of the interconnection
network� we would expect the breaks in spin lock performance to occur every �� processors�

Figure � provides an expanded view of performance results for the more scalable algorithms�
whose curves are grouped together near the bottom of
gure �� In this expanded graph� it is
apparent that the time to acquire and release the lock in the single processor case is often much
larger than the the time required when multiple processors are competing for the lock� As noted
above� parts of each acquire�release protocol can execute in parallel when multiple processors
compete� What we are measuring in our trials with many processors is not the time to execute
an acquire�release pair from start to
nish� but rather the length of time between a pair of lock
acquisitions� Complicating matters is that the time required to release an MCS lock depends on
whether another processor is waiting�

The top curve in
gure � shows the performance of Anderson�s array�based queuing algorithm�
modi
ed to scatter the slots of the queue across the available processor nodes� This modi
cation
distributes tra�c evenly in the interconnection network� by causing each processor to spin on a
location in a di�erent memory bank� Because the Butter�y lacks coherent caches� however� and
because processors spin on statically unpredictable locations� it is not in general possible with
the array�based queuing locks to spin on local locations� Linear regression yields a slope for the
performance graph of ��� �s per processor�

Three algorithms�the test and set lock with exponential backo�� the ticket lock with pro�
portional backo�� and the MCS lock�all scale extremely well� Ignoring the data points below ��
processors �which helps us separate throughput under heavy competition from latency under light
competition�� we
nd slopes for these graphs of ������ ������ and ������� �s per processor� respec�
tively� Since performance does not degrade appreciably for any of these locks within the range of
our tests� we would expect them to perform well even with thousands of processors competing�

��

� �� �� �� �� �� �� �� ��

�

��

��

��

��

��

��

��

��

��

���

Processors

Time
��s�

�
� � � � � � � � � � � � �

�

� � � � � � � � � � � � �

�

�
�

�
�

�

�
�

�

�

�

�

�

��

�

�

�

�

�

�

anderson

test " set� exp� backo�

ticket� prop� backo�

mcs

Figure �� Performance of selected spin locks on the Butter�y �empty critical section��

Figure � shows performance results for several spin lock algorithms on the Symmetry� We
adjusted data structures in minor ways to avoid the unnecessary invalidations that would result
from placing unrelated data items in the same cache line� The test�and�test and set algorithm
showed the poorest scaling behavior� with the time to acquire and release the lock increasing
dramatically even over this small range of processors� A simple test and set would perform even
worse�

Because the atomic add instruction on the Symmetry does not return the old value of its target
location� implementation of the ticket lock is not possible on the Symmetry� nor is it possible
to implement Anderson�s lock directly� In his implementation ��� Anderson �who worked on a
Symmetry� introduced an outer test and set lock with randomized backo� to protect the state
of his queue��� This strategy is reasonable when the critical section protected by the outer lock
�namely� acquisition or release of the inner lock� is substantially smaller than the critical section
protected by the inner lock� This was not the case in our initial test� so the graph in
gure �
actually results from processors contending for the outer lock� instead of the inner� queue�based
lock� To eliminate this anomaly� we repeated our tests with a non�empty critical section� as shown
in
gure �� With a su�ciently long critical section ����� �s in our tests�� processors have a chance
to queue up on the inner lock� eliminating competition for the outer lock� and allowing the inner
lock to eliminate bus transactions due to spinning� The time spent in the critical section has been
factored out of the plotted timings�

��Given that he required the outer lock in any case� Anderson also replaced the nextslot index variable with a
pointer� to save time on address arithmetic�

��

� � � � � �� �� �� �� ��

�

�

�

�

��

��

��

��

��

��

��

Processors

Time
��s�

�

�
� � � � � � � � � � �

�
�

�
�

�

�

�

�

�
� � � � � �

� � � � � � � �

�

� �

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

�
� �

�
�

�
�

� � � � � � � �

�

�

�

�

�

�

�

�

test " test " set

anderson

test " set� exp� backo�

mcs

Figure �� Performance of spin locks on the Symmetry �empty critical section��

In addition to Anderson�s lock� our experiments indicate that the MCS lock and the test and �

set lock with exponential backo� also scale extremely well� All three of the scalable algorithms
have comparable absolute performance� Anderson�s lock has a small edge for non�empty critical
sections �Graunke and Thakkar�s lock would have a larger edge�� but requires statically�allocated
space per lock linear in the number of processors� The other two algorithms need only constant
space� and do not require coherent caches to work well� The test and set lock with exponential
backo� shows a slight increasing trend� and would not be expected to do as well as the others on
a very large machine since it causes more network tra�c�

The peak in the cost of the MCS lock on two processors re�ects the lack of compare and swap�
Some fraction of the time� a processor releasing the lock
nds that its next variable is nil but
then discovers that it has a successor after all when it performs its fetch and store on the lock�s
tail pointer� Entering this timing window necessitates an additional fetch and store to restore
the state of the queue� with a consequent drop in performance� The non�empty critical sections of

gure � reduce the likelihood of hitting the window� thereby reducing the size of the two�processor
peak� With compare and swap that peak would disappear altogether�

Latency and Impact on Other Operations

In addition to performance in the presence of many competing processors� an important criterion
for any lock is the time it takes to acquire and release it in the absence of competition� Table �
shows this measure for representative locks on the Butter�y and the Symmetry� The times for the

��

� � � � � �� �� �� �� ��

�

�

�

�

��

��

��

��

��

��

��

Processors

Time
��s�

�

�

� �
�

�
�

�
� �

� �
� � � � � �

�

�

� �
� � � � �

� � � � � � � � �

�

�
� �

�

�

�

�

�

�
�

�

�

�

�

�

�
�

�

�

�

�
� � �

� � � � � � � � � � �

�

�

�

�

�

�

�

�

test " test " set

test " set� exp� backo�

mcs

anderson

Figure �� Performance of spin locks on the Symmetry �small critical section��

test and set ticket Anderson MCS

Butter�y ���� �s ���� �s ���� �s ���� �s

Symmetry ��� �s NA ���� �s ��� �s

Table �� Time for an acquire�release pair in the single processor case�

test and set lock are with code in place for exponential backo�� the time for the ticket lock is with
code in place for proportional backo�� The test and set lock is cheapest on both machines in the
single processor case� it has the shortest code path� On the Butter�y� the ticket lock� Anderson�s
lock� and the MCS lock are ����� ����� and ���� times as costly� respectively� On the Symmetry�
Anderson�s lock and the MCS lock are ���� and ���� times as costly as the test and set lock�

Two factors skew the absolute numbers on the Butter�y� making them somewhat misleading�
First� the atomic operations on the Butter�y are inordinately expensive in comparison to their
non�atomic counterparts� Most of the latency of each of the locks is due to the cost of setting up
a parameter block and executing an atomic operation� �We re�use partially�initialized parameter
blocks as much as possible to minimize this cost�� The expense of atomic operations a�ects the
performance of the MCS lock in particular� since it requires at least two fetch and store operations
�one to acquire the lock and another to release it�� and possibly a third �if we hit the timing
window�� Second� the ���bit atomic primitives on the Butter�y cannot manipulate ���bit pointers

��

Increase in
Busy�wait Lock Network Latency

Measured From
Lock Node Idle Node

test and set ����� ���

test and set w� linear backo� ���� ���

test and set w� exp� backo� ��� ��

ticket ���� ���

ticket w� prop� backo� ��� ��

Anderson ��� ���

MCS �� ��

Table �� Increase in network latency �relative to that of an idle machine� on the Butter�y caused
by �� processors competing for a busy�wait lock�

atomically� To implement the MCS algorithm� we were forced to replace the pointers with indices
into a replicated� statically�allocated array of pointers to qnode records�

Absolute performance for all of the algorithms is much better on the Symmetry than on the
Butter�y� The Symmetry�s clock runs twice as fast� and its caches make memory in general appear
signi
cantly faster� The di�erences between algorithms are also smaller on the Symmetry� mainly
because of the lower di�erence in cost between atomic and non�atomic instructions� and also because
the Symmetry�s ���bit fetch and store instruction allows the MCS lock to use pointers� We
believe the numbers on the Symmetry to be representative of actual lock costs on modern machines�
Recent experience with the BBN TC���� machine con
rms this belief� single�processor latencies
on this machine �a newer Butter�y architecture based on the Motorola ����� chipset� vary from
��� �s for the simple test and set lock to ���� �s for the MCS lock� The single�processor latency
of the MCS lock on the Symmetry is only ��� higher than that of the simple test and set lock�
on the TC���� it is ��� higher�

A
nal important measure of spin lock performance is the amount of interconnection network
tra�c caused by busy�waiting processors� and the impact of this tra�c on other activity on the
machine� In an attempt to measure these quantities� we obtained an estimate of average network
latency on the Butter�y by measuring the total time required to probe the network interface
controller on each of the processor nodes during a spin lock test� Table � presents our results in
the form of percentage increases over the value measured on an idle machine� In the Lock Node
column� probes were made from the processor on which the lock itself resided �this processor was
otherwise idle in all our tests�� in the Idle Node column� probes were made from another processor
not participating in the spin lock test� Values in the two columns di�er markedly for both the
test and set and ticket locks �particularly without backo�� because competition for access to the
lock is focused on a central hot spot� and steals network interface bandwidth from the process
attempting to perform the latency measurement on the lock node� Values in the two columns
are similar for Anderson�s lock because its data structure �and hence its induced contention� is
distributed throughout the machine� Values are both similar and low for the MCS lock because
its data structure is distributed and because each processor refrains from spinning on the remote
portions of that data structure�

��

Discussion and Recommendations

Spin lock algorithms can be evaluated on the basis of several criteria�

� scalability and induced network load

� one�processor latency

� space requirements

� fairness�sensitivity to preemption

� implementability with given atomic operations

The MCS lock and� on cache�coherent machines� the array�based queuing locks are the most
scalable algorithms we studied� The test and set and ticket locks also scale well with appropri�
ate backo�� but induce more network load� The test and set and ticket locks have the lowest
single�processor latency� but with good implementations of fetch and � instructions the MCS and
Anderson locks are reasonable as well� The space needs of Anderson�s lock and of the Graunke and
Thakkar lock are likely to be prohibitive when a large number of locks is needed�in the internals
of an operating system� for example�or when locks are being acquired and released by processes
signi
cantly more numerous than the physical processors� If the number of processes can change
dynamically� then the data structures of an array�based lock must be made large enough to ac�
commodate the maximum number of processes that may ever compete simultaneously� For the
Graunke and Thakkar lock� the set of process ids must also remain fairly dense� If the maximum
number of processes is underestimated the system will not work� if it is overestimated then space
will be needlessly wasted�

The ticket lock� the array�based queuing locks� and the MCS lock all guarantee that processors
attempting to acquire a lock will succeed in FIFO order� This guarantee of fairness is likely to be
considered an advantage in many environments� but is likely to waste CPU resources if spinning
processes may be preempted� �Busy�wait barriers may also waste cycles in the presence of preemp�
tion�� We can avoid this problem by co�scheduling processes that share locks ���� Alternatively �for
mutual exclusion�� a test and set lock with exponential backo� will allow latecomers to acquire
the lock when processes that arrived earlier are not running� In this situation the test and set

lock may be preferred to the FIFO alternatives� Additional mechanisms can ensure that a process
is not preempted while actually holding a lock ��� ����

All of the spin lock algorithms we have considered require some sort of fetch and � instructions�
The test and set lock of course requires test and set� The ticket lock requires fetch and �

increment� The MCS lock requires fetch and store��� and bene
ts from compare and swap�
Anderson�s lock bene
ts from fetch and add� Graunke and Thakkar�s lock requires fetch and �

store�

For cases in which competition is expected� the MCS lock is clearly the implementation of choice�
It provides a very short passing time� ensures FIFO ordering� scales almost perfectly� and requires
only a small� constant amount of space per lock� It also induces the least amount of interconnect
contention� On a machine with fast fetch and � operations �particularly if compare and swap is
available�� its one�processor latency will be competitive with all the other algorithms�

��It could conceivably be used with only compare and swap� simulating fetch and store in a loop� but at a signif�
icant loss in scalability�

��

� �� �� �� �� �� �� �� ��

�

���

����

����

����

����

����

����

����

����

����

����

����

Processors

Time
��s�

�����
��

� �
�

�

�

�

�

�

����
��
�

�

�

�

�

�

�

�

�

����
���

�
�

�

�

�

�

�

�

������
� � ��

� ��
�

�
�

�

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � �

�

�

�

�

�

�

�

�

�

�

�

�

counter

counter� exp� backo�

counter� prop� backo�

combining tree

counter w� tree wakeup

bidirectional tournament

tree

dissemination

Figure �� Performance of barriers on the Butter�y�

The ticket lock with proportional backo� is an attractive alternative if one�processor latency is
an overriding concern� or if fetch and store is not available� Although our experience with it is
limited to a distributed�memory multiprocessor without cache coherence� our expectation is that
the ticket lock with proportional backo� would perform well on cache�coherent multiprocessors as
well� The test and set lock with exponential backo� is an attractive alternative if preemption
is possible while spinning� or if neither fetch and store nor fetch and increment is available�
It is signi
cantly slower than the ticket lock with proportional backo� in the presence of heavy
competition� and results in signi
cantly more network load�

��� Barriers

Figure � shows the performance on the Butter�y of the barrier algorithms described in section ��
The top three curves are all sense�reversing� counter�based barriers as in algorithm �� with various
backo� strategies� The slowest performs no backo�� The next uses exponential backo�� We
obtained the best performance with an initial delay of �� iterations through an empty loop� with
a backo� base of �� Our results suggest that it may be necessary to limit the maximum backo� in
order to maintain stability� When many barriers are executed in sequence� the skew of processors
arriving at the barriers appears to be magni
ed by the exponential backo� strategy� As the skew
between arriving processors increases� processors back o� farther� With a backo� base larger than
�� we had to cap the maximum delay in order for our experiments to
nish� Even with a backo�
base of �� a delay cap improved performance� Our best results were obtained with a cap of �P

��

� �� �� �� �� �� �� �� ��

�

��

���

���

���

���

���

���

���

���

���

Processors

Time
��s�

�
�

�
���

�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

�
�

� � � �
� � � � �

�

�

�

� � �

� � � � �

� � �

�

�

�

�

�

�

counter w� tree wakeup

bidirectional tournament

tree

dissemination

Figure �� Performance of selected barriers on the Butter�y�

delay loop iterations�

In our
nal experiment with a centralized� counter�based barrier� we used a variant of the
proportional delay idea employed in the ticket lock� After incrementing the barrier count to signal
its arrival� each processor participating in the barrier delays a period of time proportional to the
total number of participants �not the number yet to arrive�� prior to testing the sense variable
for the
rst time� The rationale for this strategy is to timeslice available interconnect bandwidth
between the barrier participants� Since the Butter�y network does not provide hardware combining�
at least �P �� accesses to the barrier state are required �P to signal processor arrivals� and P �� to
discover that all have arrived�� Each processor delays long enough for later processors to indicate
their arrival� and for earlier processors to notice that all have arrived� As shown in
gure �� this
strategy outperforms both the naive central barrier and the central barrier with exponential backo��
At the same time� all three counter�based algorithms lead to curves of similar shape� The time to
achieve a barrier appears to increase more than linearly in the number of participants� The best of
these purely centralized algorithms �the proportional backo� strategy� requires over ��� ms for an
�� processor barrier�

The fourth curve in
gure � is the combining tree barrier of algorithm �� Though this algo�
rithm scales better than the centralized approaches �in fact� it scales roughly logarithmically with
P � although the constant is large�� it still spins on remote locations� and encounters increasing
interconnect contention as the number of processors grows�

Figure � provides an expanded view of performance results for the algorithms with the best

��

performance� whose curves are grouped together near the bottom of
gure �� The code for the
upper curve uses a central counter to tally arrivals at the barrier� but employs a binary tree for
wakeup� as in algorithm ��� The processor at the root of the tree spins on the central counter�
Other processors spin on �ags in their respective nodes of the tree� All spins are local� but the
tallying of arrivals is serialized� We see two distinct sections in the resulting performance curve�
With fewer than �� processors� the time for wakeup dominates� and the time to achieve the barrier
is roughly logarithmic in the number of participants� With more than �� processors� the time to
access the central counter dominates� and the time to achieve the barrier is roughly linear in the
number of participants�

The three remaining curves in
gure � are for the bidirectional tournament barrier� our tree
barrier� and the dissemination barrier� The time to achieve a barrier with each of these algorithms
scales logarithmically with the number of processors participating� The tournament and dissemina�
tion barriers proceed through O�dlogPe� rounds of synchronization� leading to a stair�step curve�
Since the Butter�y does not provide coherent caches� the tournament barrier employs a binary
wakeup tree� as shown in algorithm ��� It requires �dlog� Pe rounds of synchronization� compared
to only dlog� Pe rounds in the dissemination barrier� resulting in a roughly two�fold di�erence in
performance� Our tree�based barrier lies between the other two� its critical path passes information
from one processor to another approximately log� P � log� P times� The lack of clear�cut rounds
in our barrier explains its smoother performance curve� each additional processor adds another
level to some path through the tree� or becomes the second child of some node in the wakeup tree�
delayed slightly longer than its sibling�

Figure �� shows the performance on the Sequent Symmetry of several di�erent barriers� Results
di�er sharply from those on the Butter�y for two principal reasons� First� it is acceptable on the
Symmetry for more than one processor to spin on the same location� each obtains a copy in its
cache� Second� no signi
cant advantage arises from distributing writes across the memory modules
of the machine� the shared bus enforces an overall serialization� The dissemination barrier requires
O�P logP � bus transactions to achieve a P �processor barrier� The other four algorithms require
O�P � transactions� and all perform better than the dissemination barrier for P � ��

Below the maximum number of processors in our tests� the fastest barrier on the Symmetry used
a centralized counter with a sense�reversing wakeup �ag �from algorithm ��� P bus transactions are
required to tally arrivals� � to toggle the sense�reversing �ag �invalidating all the cached copies�� and
P �� to e�ect the subsequent re�loads� Our tree barrier generates �P �� writes to �ag variables on
which other processors are waiting� necessitating an additional �P � � re�loads� By using a central
sense�reversing �ag for wakeup �instead of the wakeup tree�� we can eliminate half of this overhead�
The resulting algorithm is identi
ed as �arrival tree	 in
gure ��� Though the arrival tree barrier
has a larger startup cost� its P � � writes are cheaper than the P read�modify�write operations of
the centralized barrier� so its slope is lower� For large values of P � the arrival tree with wakeup �ag
is the best performing barrier� and should become clearly so on larger machines�

The tournament barrier on the Symmetry uses a central wakeup �ag� It roughly matches the
performance of the arrival tree barrier for P ! �i� but is limited by the length of the execution
path of the tournament champion� which grows suddenly by one each time that P exceeds a power
of ��

Discussion and Recommendations

Evaluation criteria for barriers include�

��

� � � � � �� �� �� �� ��

�

��

��

��

��

���

���

Processors

Time
��s�

�

� �

� � � �

� �
� � � � � �

� �

�
�

�
�

� �
�

� � �
�

� � �
�

�
�

�

�

�

�

�

�

� �
�

�
� �

�
�

� �
�

�

�
�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

dissemination

tree

tournament ��ag wakeup�

arrival tree

counter

Figure ��� Performance of barriers on the Symmetry�

� length of critical path

� total number of network transactions

� space requirements

� implementability with given atomic operations

Space needs are constant for the centralized barrier� linear for our tree�based barrier and for the
combining tree barrier� and O�P log P � for the dissemination barrier and for all variants of Hensgen�
Finkel� and Manber�s tournament barrier� �Lubachevsky�s EREW version of the tournament barrier
is O�P ��� With appropriate distribution of data structures� the dissemination barrier requires a
total of O�P logP � network transactions� The tournament barrier and our tree�based barrier require
O�P �� The centralized and combining tree barriers require O�P � on machines with broadcast�based
coherent caches� and a potentially unbounded number on other machines�

On a machine in which independent network transactions can proceed in parallel� the critical
path length is O�logP � for all but the centralized barrier� which is O�P �� On a machine that
serializes network transactions �e�g�� on a shared bus�� this logarithmic factor will be dominated
asymptotically by the linear �or greater� total number of network transactions� The centralized
and combining tree barriers require an atomic increment or decrement instruction with at least a
limited mechanism for determining the value of memory prior to modi
cation� The other barriers
depend only on the atomicity of ordinary reads and writes�

��

The dissemination barrier appears to be the most suitable algorithm for distributed memory
machines without broadcast� It has a shorter critical path than the tree and tournament barriers �by
a constant factor�� and is therefore faster� The class of machines for which the dissemination barrier
should outperform all other algorithms includes the BBN Butter�y ��� the IBM RP� ���� Cedar
���� the BBN Monarch ���� the NYU Ultracomputer ���� and proposed large�scale multiprocessors
with directory�based cache coherence ��� Our tree�based barrier will also perform well on these
machines� It induces less network load� and requires total space proportional to P � rather than
P logP � but its critical path is longer by a factor of about ���� It might conceivably be preferred
over the dissemination barrier when sharing the processors of the machine among more than one
application� if network load proves to be a problem�

Our tree�based barrier with wakeup �ag should be the fastest algorithm on large�scale multipro�
cessors that use broadcast to maintain cache coherence �either in snoopy cache protocols ��� or in
directory�based protocols with broadcast ���� It requires only O�P � updates to shared variables in
order to tally arrivals� compared to O�P logP � for the dissemination barrier� Its updates are sim�
ple writes� which are cheaper than the read�modify�write operations of a centralized counter�based
barrier� �Note� however� that the centralized barrier outperforms all others for modest numbers
of processors�� The space needs of the tree�based barrier are lower than those of the tournament
barrier �O�P � instead of O�P logP ��� its code is simpler� and it performs slightly less local work
when P is not a power of �� Our results are consistent with those of Hensgen� Finkel� and Manber
���� who showed their tournament barrier to be faster than their dissemination barrier on the
Sequent Balance multiprocessor� They did not compare their algorithms against a centralized bar�
rier because the lack of an atomic increment instruction on the Balance precludes e�cient atomic
update of a counter�

The centralized barrier enjoys one additional advantage over all of the other alternatives� it
adapts easily to di�ering numbers of processors� In an application in which the number of processors
participating in a barrier changes from one barrier episode to another� the log�depth barriers will
all require internal reorganization� possibly swamping any performance advantage obtained in the
barrier itself� Changing the number of processors in a centralized barrier entails no more than
changing a single constant�

��� Architectural Implications

Many di�erent shared memory architectures have been proposed� From the point of view of syn�
chronization� the two relevant issues seem to be ��� whether each processor can access some portion
of shared memory locally �instead of through the interconnection network�� and ��� whether broad�
cast is available for cache coherency� The
rst issue is crucial� it determines whether busy waiting
can be eliminated as a cause of memory and interconnect contention� The second issue determines
whether barrier algorithms can e�ciently employ a centralized �ag for wakeup�

The most scalable synchronization algorithms �the MCS spin lock and the tree� bidirectional
tournament� and dissemination barriers� are designed in such a way that each processor spins on
statically�determined �ag variable�s� on which no other processor spins� On a distributed shared
memory machine� �ag variables can be allocated in the portion of the shared memory co�located
with the processor that spins on them� On a cache�coherent machine� they migrate to the spinning
processor�s cache automatically� Provided that �ag variables used for busy�waiting by di�erent
processors are in separate cache lines� network transactions are used only to update a location on
which some processor is waiting �or for initial cache line loads�� For the MCS spin lock the number
of network transactions per lock acquisition is constant� For the tree and tournament barriers�

��

the number of network transactions per barrier is linear in the number of processors involved� For
the dissemination barrier� the number of network transactions is O�P logP �� but still O�logP � on
the critical path� No network transactions are due to spinning� so interconnect contention is not a
problem�

On �dance hall	 machines� in which shared memory must always be accessed through a shared
processor�memory interconnect� there is no way to eliminate synchronization�related interconnect
contention in software� Nevertheless� the algorithms we have described are useful since they mini�
mize memory contention and hot spots caused by synchronization� The structure of these algorithms
makes it easy to assign each processor�s busy�wait �ag variables to a di�erent memory bank so that
the load induced by spinning will be distributed evenly throughout memory and the interconnect�
rather than being concentrated in a single spot� Unfortunately� on dance hall machines the load
will still consume interconnect bandwidth� degrading the performance not only of synchronization
operations but also of all other activity on the machine� severely constraining scalability�

Dance hall machines include bus�based multiprocessors without coherent caches� and multistage
network architectures such as Cedar ���� the BBN Monarch ���� and the NYU Ultracomputer ����
Both Cedar and the Ultracomputer include processor�local memory� but only for private code and
data� The Monarch provides a small amount of local memory as a �poor man�s instruction cache�	
In none of these machines can local memory be modi
ed remotely� We consider the lack of local
shared memory to be a signi
cant architectural shortcoming� the inability to take full advantage of
techniques such as those described in this paper is a strong argument against the construction of
dance hall machines�

To assess the importance of local shared memory� we used our Butter�y � to simulate a machine
in which all shared memory is accessed through the interconnection network� By �ipping a bit in
the segment register for the synchronization variables on which a processor spins� we can cause the
processor to go out through the network to reach these variables �even though they are in its own
memory�� without going through the network to reach code and private data� This trick e�ectively
�attens the two�level shared memory hierarchy of the Butter�y into a single level organization
similar to that of Cedar� the Monarch� or the Ultracomputer�

Figure �� compares the performance of the dissemination and tree barrier algorithms for one
and two level memory hierarchies� All timing measurements in the graph were made with inter�
rupts disabled� to eliminate any e�ects due to timer interrupts or scheduler activity� The bottom
two curves are the same as in
gures � and �� The top two curves show the corresponding per�
formance of the barrier algorithms when all accesses to shared memory are forced to go through
the interconnection network� When busy�waiting accesses traverse the interconnect� the time to
achieve a barrier using the tree and dissemination algorithms increases linearly with the number of
processors participating� A least squares
t shows the additional cost per processor to be ���� �s
and ��� �s� respectively� For an ���processor barrier� the lack of local spinning increases the cost
of the tree and dissemination barriers by factors of ���� and ���� respectively�

In a related experiment� we measured the impact on network latency of executing the dissem�
ination or tree barriers with and without local access to shared memory� The results appear in
table �� As in table �� we probed the network interface controller on each processor to compare
network latency of an idle machine with the latency observed during a �� processor barrier� Table �
shows that when processors are able to spin on shared locations locally� average network latency
increases only slightly� With only network access to shared memory� latency more than doubles�

Studies by P
ster and Norton ��� show that hot�spot contention can lead to tree saturation
in multistage interconnection networks with blocking switch nodes and distributed routing control�

��

� �� �� �� �� �� �� �� ��

�

���

���

���

����

����

����

����

����

����

����

Processors

Time
��s�

�
� � �

� � � � � � � � � � ��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � � � � � � � � � � � � �

�

�

�

�
�

�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

tree� remote

dissemination� remote

tree� local

dissemination� local

Figure ��� Performance of tree and dissemination barriers with and without local access to shared
memory�

barrier local polling network polling

tree ��� ����

dissemination ��� ����

Table �� Increase in network latency �relative to that of an idle machine� on the Butter�y caused
by �� processor barriers using local and network polling strategies�

��

independent of the network topology� A study by Kumar and P
ster ��� shows the onset of
hot�spot contention to be rapid� P
ster and Norton argue for hardware message combining in
interconnection networks to reduce the impact of hot spots� They base their argument primarily
on anticipated contention for locks� noting that they know of no quantitative evidence to support
or deny the value of combining for general memory tra�c� Our results indicate that the cost
of synchronization in a system without combining� and the impact that synchronization activity
will have on overall system performance� is much less than previously thought �provided that the
architecture incorporates a shared memory hierarchy of two or more levels�� Although the scalable
algorithms presented in this paper are unlikely to match the performance of hardware combining�
they will come close enough to provide an extremely attractive alternative to complex� expensive
hardware���

Other researchers have suggested building special�purpose hardware mechanisms solely for syn�
chronization� including synchronization variables in the switching nodes of multistage interconnec�
tion networks ��� and lock queuing mechanisms in the cache controllers of cache�coherent multipro�
cessors ��� ��� ���� Our results suggest that simple exploitation of a multi�level memory hierarchy�
in software� may provide a more cost�e�ective means of avoiding lock�based contention�

The algorithms we present in this paper require no hardware support for synchronization other
than commonly�available atomic instructions� The scalable barrier algorithms rely only on atomic
read and write� The MCS spin lock algorithm uses fetch and store and maybe compare and swap�
Graunke and Thakkar�s lock requires fetch and store� Anderson�s lock bene
ts from fetch �

and increment� and the ticket lock requires it� All of these instructions have uses other than
the construction of busy�wait locks� Fetch and store and compare and swap� for example� are
essential for manipulating pointers to build concurrent data structures ��� ���� Because of their
general utility� fetch and � instructions are substantially more attractive than special�purpose
synchronization primitives� Future designs for shared memory machines should include a full set
of fetch and � operations� including compare and swap�

Our measurements on the Sequent Symmetry indicate that special�purpose synchronization
mechanisms such as the QOLB instruction ��� are unlikely to outperform our MCS lock by more
than ���� A QOLB lock will have higher single�processor latency than a test and set lock ���
p����� and its performance should be essentially the same as the MCS lock when competition
for a lock is high� Goodman� Vernon� and Woest suggest that a QOLB�like mechanism can be
implemented at very little incremental cost �given that they are already constructing large coherent
caches with multi�dimensional snooping�� We believe that this cost must be extremely low to make
it worth the e�ort�

Of course� increasing the performance of busy�wait locks and barriers is not the only possible
rationale for implementing synchronization mechanisms in hardware� Recent work on weakly�
consistent shared memory �� ��� ��� has suggested the need for synchronization �fences	 that
provide clean points for memory semantics� Combining networks� likewise� may improve the per�
formance of memory with bursty access patterns �caused� for example� by sharing after a barrier��
We do not claim that hardware support for synchronization is unnecessary� merely that the most
commonly�cited rationale for it�that it is essential to reduce contention due to synchronization�is
invalid�

��P�ster and Norton estimate that message combining will increase the size and possibly the cost of an intercon�
nection network �� to ���fold� Gottlieb ���� indicates that combining networks are di�cult to bit�slice�

��

� Summary of Recommendations

We have presented a detailed comparison of new and existing algorithms for busy�wait synchro�
nization on shared�memory multiprocessors� with a particular eye toward minimizing the network
transactions that lead to contention� We introduced the MCS lock� the new tree�based barrier� and
the notion of proportional backo� for the ticket lock and the centralized barrier� We demonstrated
how to eliminate fetch and � operations from the wakeup phase of the combining tree barrier� pre�
sented a wakeup mechanism for the tournament barrier that uses contiguous� statically allocated
�ags to ensure local�only spinning� and observed that the data structures of the dissemination
barrier can be distributed for local�only spinning�

The principal conclusion of our work is that memory and interconnect contention due to busy�
wait synchronization in shared�memory multiprocessors need not be a problem� This conclusion
runs counter to widely�held beliefs� We have presented empirical performance results for a wide
variety of busy�wait algorithms on both a cache�coherent multiprocessor and a multiprocessor with
distributed shared memory� These results demonstrate that appropriate algorithms using simple
and widely�available atomic instructions can reduce synchronization contention e�ectively to zero�

For spin locks on a shared�memory multiprocessor� regardless of architectural details� we suggest�

�� If the hardware provides an e�cient fetch and store instruction �and maybe compare and �

swap�� then use the MCS lock� One�processor latency will be reasonable� and scalability will
be excellent�

�� If fetch and store is not available� or if atomic operations are very expensive relative to non�
atomic instructions and one�processor latency is an overwhelming concern� then use the ticket
lock with proportional backo� �assuming the hardware supports fetch and increment�� The
code for such a lock is typically more complicated than code for the MCS lock� and the load on
the processor�memory interconnect will be higher in the presence of competition for the lock�
but speed on a single processor will be slightly better and scalability will still be reasonable�

�� Use the simple lock with exponential backo� �with a cap on the maximum delay� if processes
might be preempted while spinning� or if one�processor latency is an overwhelming concern
and the hardware does not support fetch and increment �assuming of course that it does
support test and set��

For barrier synchronization we suggest�

�� On a broadcast�based cache�coherent multiprocessor �with unlimited replication�� use either
a centralized counter�based barrier �for modest numbers of processors�� or a barrier based on
our ��ary arrival tree and a central sense�reversing wakeup �ag�

�� On a multiprocessor without coherent caches� or with directory�based coherency without
broadcast� use either the dissemination barrier �with data structures distributed to respect
locality� or our tree�based barrier with tree wakeup� The critical path through the dissemi�
nation barrier algorithm is about a third shorter than that of the tree barrier� but the total
amount of interconnect tra�c is O�P logP � instead of O�P �� The dissemination barrier will
outperform the tree barrier on machines such as the Butter�y� which allow non�interfering
network transactions from many di�erent processors to proceed in parallel�

��

For the designers of large�scale shared�memory multiprocessors� our results argue in favor of
providing distributed memory or coherent caches� rather than dance�hall memory without coherent
caches �as in Cedar� the Monarch� or the Ultracomputer�� Our results also indicate that combining
networks for such machines must be justi
ed on grounds other than the reduction of synchroniza�
tion overhead� We strongly suggest that future multiprocessors include a full set of fetch and �
operations �especially fetch and store and compare and swap��

Acknowledgments

Tom LeBlanc and Evangelos Markatos provided helpful comments on an early version of this paper�
Comments of the referees were also very helpful�

Some of the experiments described in this paper were performed on a BBN TC���� that is
part of the Advanced Computing Research Facility� Mathematics and Computer Science Division�
Argonne National Laboratory�

References

�� S� V� Adve and M� D� Hill� Weak ordering�a new de
nition� In Proc� of the International
Symposium on Computer Architecture� pages ����� Seattle� WA� May �����

�� A� Agarwal and M� Cherian� Adaptive backo� synchronization techniques� In Proc� of the
International Symposium on Computer Architecture� pages �������� Jerusalem� Israel� May
�����

�� A� Agarwal� R� Simoni� J� Hennessy� and M� Horowitz� An evaluation of directory schemes for
cache coherence� In Proc� of the International Symposium on Computer Architecture� pages
�������� New York� NY� June �����

�� G� S� Almasi and A� Gottlieb� Highly Parallel Computing� Benjamin�Cummings� Redwood
City� CA� �����

�� T� E� Anderson� The performance of spin lock alternatives for shared�memory multiprocessors�
IEEE Transactions on Parallel and Distributed Systems� ���������� Jan� �����

�� T� E� Anderson� E� D� Lazowska� and H� M� Levy� The performance implications of thread
management alternatives for shared�memory multiprocessors� Performance Evaluation Re�
view� ������������ May ����� SIGMETRICS ��� Conference Paper�

�� J� Archibald and J��L� Baer� An economical solution to the cache coherence problem� In Proc�
of the International Symposium on Computer Architecture� pages �������� �����

�� BBN Laboratories� Butter�y parallel processor overview� Technical Report ����� Version ��
BBN Laboratories� Cambridge� MA� Mar� �����

�� E� D� Brooks III� The butter�y barrier� International Journal of Parallel Programming�
�������������� �����

��� E� D� Brooks III� The shared memory hypercube� Parallel Computing� ���������� �����

��

��� H� Davis and J� Hennessy� Characterizing the synchronization behavior of parallel programs� In
Proc� of the ACM�SIGPLAN PPEALS ���� Conference on Parallel Programming� Experience
with Applications� Languages and Systems� pages �������� New Haven� CT� July �����

��� E� Dijkstra� Solution of a problem in concurrent programming and control� Communications
of the ACM� ��������� Sept� �����

��� K� Gharachorloo� D� Lenoski� J� Laudon� P� Gibbons� A� Gupta� and J� L� Hennessy� Memory
consistency and event ordering in scalable shared�memory multiprocessors� In Proc� of the
International Symposium on Computer Architecture� pages ������ Seattle� WA� May �����

��� J� R� Goodman� M� K� Vernon� and P� J� Woest� E�cient synchronization primitives for large�
scale cache�coherent multiprocessors� In Proc� of the �rd International Conference on Archi�
tectural Support for Programming Languages and Operating Systems� pages ������ Boston�
MA� Apr� �����

��� J� R� Goodman and P� J� Woest� The Wisconsin Multicube� A new large�scale cache coherent
multiprocessor� In Proc� of the International Symposium on Computer Architecture� pages
�������� Honolulu� HI� May �����

��� A� Gottlieb� Scalability� Combining and the NYU Ultracomputer� Ohio State University Par�
allel Computing Workshop� Mar� ����� Invited Lecture�

��� A� Gottlieb� R� Grishman� C� P� Kruskal� K� P� McAuli�e� L� Rudolph� and M� Snir� The NYU
Ultracomputer�Designing an MIMD shared memory parallel computer� IEEE Transactions
on Computers� C��������������� Feb� �����

��� G� Graunke and S� Thakkar� Synchronization algorithms for shared�memory multiprocessors�
Computer� ������������ June �����

��� D� Hensgen� R� Finkel� and U� Manber� Two algorithms for barrier synchronization� Interna�
tional Journal of Parallel Programming� ����������� �����

��� M� Herlihy� A methodology for implementing highly concurrent data structures� In Proceedings
of the Second ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
	PPoPP
� pages �������� Seattle� WA� Mar� �����

��� D� N� Jayasimha� Distributed synchronizers� In Proc� of the ���� International Conference
on Parallel Processing� pages ������ St� Charles� IL� Aug� �����

��� C� P� Kruskal� L� Rudolph� and M� Snir� E�cient synchronization on multiprocessors with
shared memory� In Proc� of the �th Annual ACM Symposium on Principles of Distributed
Computing� pages �������� �����

��� M� Kumar and G� F� P
ster� The onset of hot spot contention� In Proc� of the ���� Interna�
tional Conference on Parallel Processing� pages ������ �����

��� L� Lamport� A new solution of Dijkstra�s concurrent programming problem� Communications
of the ACM� �������������� Aug� �����

��� L� Lamport� The mutual exclusion problem� Part I�A theory of interprocess communication�
Part II�Statement and solutions� Journal of the ACM� �������������� Apr� �����

��

��� L� Lamport� A fast mutual exclusion algorithm� ACM Transactions on Computer Systems�
���������� Feb� �����

��� C� A� Lee� Barrier synchronization over multistage interconnection networks� In Proc� of the
Second IEEE Symposium on Parallel and Distributed Processing� pages �������� Dallas� TX�
Dec� �����

��� J� Lee and U� Ramachandran� Synchronization with multiprocessor caches� In Proc� of the
International Symposium on Computer Architecture� Seattle� WA� May �����

��� B� Lubachevsky� An approach to automating the veri
cation of compact parallel coordination
programs� I� Acta Informatica� pages �������� �����

��� B� Lubachevsky� Synchronization barrier and related tools for shared memory parallel pro�
gramming� In Proc� of the ���� International Conference on Parallel Processing� pages II�
����II����� Aug� �����

��� M� Maekawa� A
p
N algorithm for mutual exclusion in decentralized systems� ACM Transac�

tions on Computer Systems� ������������� May �����

��� J� M� Mellor�Crummey� Concurrent queues� Practical fetch�and�� algorithms� Technical
Report ���� Computer Science Department� University of Rochester� Nov� �����

��� J� M� Mellor�Crummey and M� L� Scott� Algorithms for scalable synchronization on shared�
memory multiprocessors� Technical Report ���� Computer Science Department� University
of Rochester� Apr� ����� Also COMP TR������� Department of Computer Science� Rice
University� May �����

��� J� K� Ousterhout� D� A� Scelza� and P� S� Sindhu� Medusa� An experiment in distributed
operating system structure� Communications of the ACM� ������ Feb� �����

��� P���� Working Group of the IEEE Computer Society Microprocessor Standards Committee�
SCI �scalable coherent interface�� An overview of extended cache�coherence protocols� Feb� ��
����� Draft ���� P�����Part III�D�

��� G� L� Peterson� A new solution to Lamport�s concurrent programming problem using small
shared variables� ACM Transactions on Programming Languages and Systems� �����������
Jan� �����

��� G� P
ster et al� The IBM research parallel processor prototype �RP��� Introduction and
architecture� In Proc� of the ���� International Conference on Parallel Processing� pages
�������� St� Charles� Illinois� Aug� �����

��� G� F� P
ster and V� A� Norton� �Hot spot	 contention and combining in multistage intercon�
nection networks� IEEE Transactions on Computers� C���������������� Oct� �����

��� K� Raymond� A tree�based algorithm for distributed mutual exclusion� ACM Transactions on
Computer Systems� ����������� Feb� �����

��� M� Raynal� Algorithms for Mutual Exclusion� MIT Press Series in Scienti
c Computation�
MIT Press� Cambridge� MA� ����� Translated from the French by D� Beeson�

��� D� P� Reed and R� K� Kanodia� Synchronization with eventcounts and sequencers� Commu�
nications of the ACM� �������������� Feb� �����

��

��� R� D� Rettberg� W� R� Crowther� P� P� Carvey� and R� S� Tomlinson� The Monarch parallel
processor hardware design� Computer� ������������ Apr� �����

��� G� Ricart and A� K� Agrawala� An optimal algorithm for mutual exclusion in computer
networks� Communications of the ACM� ����������� Jan� �����

��� L� Rudolph and Z� Segall� Dynamic decentralized cache schemes for MIMD parallel processors�
In Proc� of the International Symposium on Computer Architecture� pages �������� �����

��� B� A� Sanders� The information structure of distributed mutual exclusion algorithms� ACM
Transactions on Computer Systems� ������������� Aug� �����

��� F� B� Schneider� Synchronization in distributed programs� ACM Transactions on Programming
Languages and Systems� ������������� Apr� �����

��� M� L� Scott� T� J� LeBlanc� and B� D� Marsh� Multi�model parallel programming in Psyche� In
Proceedings of the Second ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming 	PPoPP
� pages ������ Seattle� WA� Mar� �����

��� P� Tang and P��C� Yew� Processor self�scheduling for multiple�nested parallel loops� In Proc�
of the ���� International Conference on Parallel Processing� pages �������� St� Charles� IL�
Aug� �����

��� P� Tang and P��C� Yew� Algorithms for distributing hot�spot addressing� CSRD report
���� Center for Supercomputing Research and Development� University of Illinois Urbana�
Champaign� Jan� �����

��� P��C� Yew� Architecture of the Cedar parallel supercomputer� CSRD report ���� Center for
Supercomputing Research and Development� University of Illinois Urbana�Champaign� Aug�
�����

��� P��C� Yew� N��F� Tzeng� and D� H� Lawrie� Distributing hot�spot addressing in large�scale
multiprocessors� IEEE Transactions on Computers� C��������������� Apr� �����

��� J� Zahorjan� E� D� Lazowska� and D� L� Eager� The e�ect of scheduling discipline on spin
overhead in shared memory parallel processors� Technical Report TR���������� Computer
Science Department� University of Washington� July �����

��

