
Vision

January 10, 2006

Agenda

 The basics:
 Colorspaces
 Numbers and Java
 Feature detection

 More advanced concepts:
 Stereo
 Rigid Body Motion
 EM Algorithm

Basics

 Colorspaces
 Numbers and Java
 Feature detection

Representing color

 Frequencies are only part of the story...
 RGB good for light

 CYMK good for pigment
… but both mix color, tint, and brightness

wikipedia

Another Colorspace: HSV

© wikipedia

 Hue (color): 360 degrees mapped to 0 to 255
 Note red is both 0 and 255!

 Saturation (amount
 of color)
 Value (amount of
 light and dark)
 We provide the code
 to convert to HSV
 Note:

 White is low saturation, but can have any hue.
 Black is low value, but can have any hue.

 Hue (color):


Tips on Differentiating Colors

 Globally define thresholds
 Self-calibrate for different lights
 Use the gimp/bot client on real images
 Learn from a large sample set

... but you don't have to do it this way!
Last year's winning robot used RGB

How values are stored

 Uses Hexadecimal (base 16)
 0x12 = 18

 A color is four bytes = 8 hexadecimal
numbers.

 For HSV, these bytes are
Alpha
Hue
Saturation
Value

Manipulating HSV values

 Use masks to pick out parts:
 0x12345678 & 0x00FF0000 = 0x00340000

 Shift to move parts around:
0x12345678 >> 8 = 0x00123456

 Example: hue = (X >> 16) & 0xFF

Shift hue to least
significant bits

Pick out the least
significant byte

A note on java…

 All java types are signed
 A byte ranges from –128 to 127
 Coded in two’s complement: to change sign,

flip every bit and add one
 Don’t forget higher order bits

(int) 0x0000FF00 = (int) 0xFF00
 (int) ((byte) 0xFF) = (int) 0xFFFFFFFF

 Watch out for shifts
 0xFD000000 >> 8 = 0xFFFD0000

Example

 How about

int v = image.getPixel(25,25); // v = 0x8AD12390
byte hue = (v >> 16) & 0xFF //hue = 0xD1

 if (hue > 200)
 foundRedBall();

200 is an int! When 0xD1 (is 209)
is extended to an int, it will be a
negative number!

Solution

 Use

int v = image.getPixel(25,25); // v = 0x8AD12390
int hue = (v >> 16) & 0xFF //hue = 0xD1

 if (hue > 200)
 foundRedBall();

Performance…

 Getting an image performs a copy
 Int[] = bufferedImage.getRGB(…)

 Getting a pixel performs a multiplication
 int v = bufferedImage.RGB(x,y)
 offset = y*width + x

 Memory in rows, not columns…so go
across rows and then down columns

Performance Note

 Faster access:
 bufferedImage =

ImageUtil.convertImage(bufferedImage,
BufferedImage.INT_RGB);

 DataBufferInt intBuffer = (DataBufferInt)
bufferedImage.getRaster().getDataBuffer();

 int[] b = dataBufferInt.getData();
 Need to keep track of where pixels are:

 offset = (y*width + x)
 (b[offset] >> 16) & 0xFF = red or hue
 (b[offset] >> 8) & 0xFF = green or saturation
 b[offset] & 0xFF = blue or value

Feature Detection…
and other Concepts

Maslab Features

 Red balls
 Yellow Goals
 Blue line
 Blue ticks
 Bar codes

Blue line ideas

 Search for ‘n’ wall-blue pixels in a column
 Make sure there’s wall-white below?
 Candidate voting

 in each column, list places where you think
line might be

 find shortest left to
 right path through
 candidates

Bar code ideas

 Look for green and black
 Is there not-white under the blue line?
 Check along a column to determine

colors
 RANdom SAmple Consensus

(RANSAC)
 Pick random pixels within bar code
 Are they black or green?

Looking for an object

 Look for a red patch
 Set center to current coordinates
 Loop:

 Find the new center based on
pixels within d of the old center

 Enlarge d and recompute
 Stop when increasing d doesn’t

add enough red pixels

Or try fitting a rectangle

 Scan image for a yellow patch
 In each direction, loop:

 Make rectangle bigger
 If it doesn’t add enough new

yellow pixels, then stop

EM/Nearest Neighbor

 Assume there are k red objects
 Randomly choose object locations xk, yk
 Loop:

 Assign each pixel to nearest xk, yk

 Recenter xk, yk at center of all pixels
associated with it

EM/Nearest Neighbor

 Key question: what is k?
 Need to know how many objects

 Convergence criteria for random values?
 Pick good guesses for centers

Estimating distance

 Closer objects are bigger
 Closer objects are lower

Reminders

 Try out your own algorithms! Have fun!
 Must prune out silly solutions:

 Noise
 Occlusion
 Acute viewing angles
 Overly large thresholds

More Advanced Concepts

 Stereo
 Rigid Body Motion

Stereo Vision

Left Eye Right Eye

Left Image

Right Image

 We can judge distance based on the how
much the object’s position changes.

Stereo Vision

Left Image

Right Image

 Use the image to find the angle to the
object, then apply some trig:

angle-side-angle gives
you a unique triangle

Stereo Vision

 What’s the angle?
 Perspective projection

equation tells us
x/f = X/Z

 f is focal length, x is
pixel location

 tan(φ) = X/Z = x/f center of projection

X

Z
x

f

Stereo Vision

 But in a complex image, objects may be
hard to identify…

 Try to match regions instead (block
correlation)

Stereo Vision

 Difference
metric = Sum
of (Li – Ri)^2

 Search
horizontally for
best match
(least
difference)

1 61
6 55
5 56

5 75
6 55
5 56

Stereo Vision

Left Eye Right Eye

Left Image

Right Image

 Still have a problem: unless the object is
really close, the change might be small…

Stereo Vision

Left Image

Right Image

 And many regions
will be the same in
both pictures, even if
the object has
moved.

 We need to apply
stereo only to
“interesting” regions.

Stereo Vision

 Uniform regions are not
interesting

 Patterned regions are
interesting

 Let the “interest” operator
be the lowest eigenvalue
of a matrix passed over
the region.

5 45
5 55
5 55

5 45
1 55
5 28

lowest eigenvalue = 0

lowest eigenvalue = 2.5

Stereo Vision

Stereo Vision

 For Maslab, the problem is simpler… can
easily identify objects and compute
horizontal disparity.

 To convert disparity to distance, calibrate
the trig.

 Use two cameras… or mount a camera on
a movable platform… or move your robot

Rigid Body Motion

 Going from data association to motion
 Given

 a starting x1,y1,θ1
 a set of objects visible in both images

 What is x2, y2, and θ2?

position one position two

Rigid Body Motion

 If we only know angles, the problem is
quite hard:

 Assume distances to objects are known.

1

12 2
3

3

Rigid Body Motion

 If angles and distances are known, we can
construct triangles:

distance between
objects should be
the same from
both positions

Rigid Body Motion

 Apply the math for a rotation:
x1i = cos(θ)*x2i + sin(θ)*y2i + x0

y1i = cos(θ)*y2i - sin(θ)*x2i + y0
 Solve for x0, y0, and θ with least squares:

Σ (x1i - cos(θ)*x2i - sin(θ)*y2i - x0)^2 +
 (y1i - cos(θ) *y2i + sin(θ)*x2i - y0)^2
 Need at least two objects to solve

Rigid Body Motion

 Advantages
 Relies on the world, not on odometry
 Can use many or few associations

 Disadvantage
 Can take time to compute

Your job for today

 Finish yesterday’s activities
 Read a barcode
 Work on tomorrow’s check point: turn until

you see a ball

