
Vision

January 10, 2006

Agenda

 The basics:
 Colorspaces
 Numbers and Java
 Feature detection

 More advanced concepts:
 Stereo
 Rigid Body Motion
 EM Algorithm

Basics

 Colorspaces
 Numbers and Java
 Feature detection

Representing color

 Frequencies are only part of the story...
 RGB good for light

 CYMK good for pigment
… but both mix color, tint, and brightness

wikipedia

Another Colorspace: HSV

© wikipedia

 Hue (color): 360 degrees mapped to 0 to 255
 Note red is both 0 and 255!

 Saturation (amount
 of color)
 Value (amount of
 light and dark)
 We provide the code
 to convert to HSV
 Note:

 White is low saturation, but can have any hue.
 Black is low value, but can have any hue.

 Hue (color):

Tips on Differentiating Colors

 Globally define thresholds
 Self-calibrate for different lights
 Use the gimp/bot client on real images
 Learn from a large sample set

... but you don't have to do it this way!
Last year's winning robot used RGB

How values are stored

 Uses Hexadecimal (base 16)
 0x12 = 18

 A color is four bytes = 8 hexadecimal
numbers.

 For HSV, these bytes are
Alpha
Hue
Saturation
Value

Manipulating HSV values

 Use masks to pick out parts:
 0x12345678 & 0x00FF0000 = 0x00340000

 Shift to move parts around:
0x12345678 >> 8 = 0x00123456

 Example: hue = (X >> 16) & 0xFF

Shift hue to least
significant bits

Pick out the least
significant byte

A note on java…

 All java types are signed
 A byte ranges from –128 to 127
 Coded in two’s complement: to change sign,

flip every bit and add one
 Don’t forget higher order bits

(int) 0x0000FF00 = (int) 0xFF00
 (int) ((byte) 0xFF) = (int) 0xFFFFFFFF

 Watch out for shifts
 0xFD000000 >> 8 = 0xFFFD0000

Example

 How about

int v = image.getPixel(25,25); // v = 0x8AD12390
byte hue = (v >> 16) & 0xFF //hue = 0xD1

 if (hue > 200)
 foundRedBall();

200 is an int! When 0xD1 (is 209)
is extended to an int, it will be a
negative number!

Solution

 Use

int v = image.getPixel(25,25); // v = 0x8AD12390
int hue = (v >> 16) & 0xFF //hue = 0xD1

 if (hue > 200)
 foundRedBall();

Performance…

 Getting an image performs a copy
 Int[] = bufferedImage.getRGB(…)

 Getting a pixel performs a multiplication
 int v = bufferedImage.RGB(x,y)
 offset = y*width + x

 Memory in rows, not columns…so go
across rows and then down columns

Performance Note

 Faster access:
 bufferedImage =

ImageUtil.convertImage(bufferedImage,
BufferedImage.INT_RGB);

 DataBufferInt intBuffer = (DataBufferInt)
bufferedImage.getRaster().getDataBuffer();

 int[] b = dataBufferInt.getData();
 Need to keep track of where pixels are:

 offset = (y*width + x)
 (b[offset] >> 16) & 0xFF = red or hue
 (b[offset] >> 8) & 0xFF = green or saturation
 b[offset] & 0xFF = blue or value

Feature Detection…
and other Concepts

Maslab Features

 Red balls
 Yellow Goals
 Blue line
 Blue ticks
 Bar codes

Blue line ideas

 Search for ‘n’ wall-blue pixels in a column
 Make sure there’s wall-white below?
 Candidate voting

 in each column, list places where you think
line might be

 find shortest left to
 right path through
 candidates

Bar code ideas

 Look for green and black
 Is there not-white under the blue line?
 Check along a column to determine

colors
 RANdom SAmple Consensus

(RANSAC)
 Pick random pixels within bar code
 Are they black or green?

Looking for an object

 Look for a red patch
 Set center to current coordinates
 Loop:

 Find the new center based on
pixels within d of the old center

 Enlarge d and recompute
 Stop when increasing d doesn’t

add enough red pixels

Or try fitting a rectangle

 Scan image for a yellow patch
 In each direction, loop:

 Make rectangle bigger
 If it doesn’t add enough new

yellow pixels, then stop

EM/Nearest Neighbor

 Assume there are k red objects
 Randomly choose object locations xk, yk
 Loop:

 Assign each pixel to nearest xk, yk

 Recenter xk, yk at center of all pixels
associated with it

EM/Nearest Neighbor

 Key question: what is k?
 Need to know how many objects

 Convergence criteria for random values?
 Pick good guesses for centers

Estimating distance

 Closer objects are bigger
 Closer objects are lower

Reminders

 Try out your own algorithms! Have fun!
 Must prune out silly solutions:

 Noise
 Occlusion
 Acute viewing angles
 Overly large thresholds

More Advanced Concepts

 Stereo
 Rigid Body Motion

Stereo Vision

Left Eye Right Eye

Left Image

Right Image

 We can judge distance based on the how
much the object’s position changes.

Stereo Vision

Left Image

Right Image

 Use the image to find the angle to the
object, then apply some trig:

angle-side-angle gives
you a unique triangle

Stereo Vision

 What’s the angle?
 Perspective projection

equation tells us
x/f = X/Z

 f is focal length, x is
pixel location

 tan(φ) = X/Z = x/f center of projection

X

Z
x

f

Stereo Vision

 But in a complex image, objects may be
hard to identify…

 Try to match regions instead (block
correlation)

Stereo Vision

 Difference
metric = Sum
of (Li – Ri)^2

 Search
horizontally for
best match
(least
difference)

1 61
6 55
5 56

5 75
6 55
5 56

Stereo Vision

Left Eye Right Eye

Left Image

Right Image

 Still have a problem: unless the object is
really close, the change might be small…

Stereo Vision

Left Image

Right Image

 And many regions
will be the same in
both pictures, even if
the object has
moved.

 We need to apply
stereo only to
“interesting” regions.

Stereo Vision

 Uniform regions are not
interesting

 Patterned regions are
interesting

 Let the “interest” operator
be the lowest eigenvalue
of a matrix passed over
the region.

5 45
5 55
5 55

5 45
1 55
5 28

lowest eigenvalue = 0

lowest eigenvalue = 2.5

Stereo Vision

Stereo Vision

 For Maslab, the problem is simpler… can
easily identify objects and compute
horizontal disparity.

 To convert disparity to distance, calibrate
the trig.

 Use two cameras… or mount a camera on
a movable platform… or move your robot

Rigid Body Motion

 Going from data association to motion
 Given

 a starting x1,y1,θ1
 a set of objects visible in both images

 What is x2, y2, and θ2?

position one position two

Rigid Body Motion

 If we only know angles, the problem is
quite hard:

 Assume distances to objects are known.

1

12 2
3

3

Rigid Body Motion

 If angles and distances are known, we can
construct triangles:

distance between
objects should be
the same from
both positions

Rigid Body Motion

 Apply the math for a rotation:
x1i = cos(θ)*x2i + sin(θ)*y2i + x0

y1i = cos(θ)*y2i - sin(θ)*x2i + y0
 Solve for x0, y0, and θ with least squares:

Σ (x1i - cos(θ)*x2i - sin(θ)*y2i - x0)^2 +
 (y1i - cos(θ) *y2i + sin(θ)*x2i - y0)^2
 Need at least two objects to solve

Rigid Body Motion

 Advantages
 Relies on the world, not on odometry
 Can use many or few associations

 Disadvantage
 Can take time to compute

Your job for today

 Finish yesterday’s activities
 Read a barcode
 Work on tomorrow’s check point: turn until

you see a ball

