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Agenda 

•  What do we mean by controls? 
•  Simple PID Controller  
•  Robot Drive Controller  
•  Examples 
•  Kalman, ALS, Filters 
•  Extensions 



What are Controls? 

•  “High” Level Control Paradigms 
–  Model/Plan/Act 
–  Emergent 
–  FSM (Finite State Machine) 

•  “Low” Level Control Loops 
–  Motor Velocity 
–  Robot Angular Position 
–  Etc… 

Why can’t we just tell the robot to go at 0.2m/s in a 
straight line? 



What are Controls? 

Sensors Information 

Sensors are far from perfect 
• Camera white balance 
• Encoder quantization error 
• Ultrasound reflections  
• Infrared sensors noisy 
• Etc… 

Actuators are far from perfect 
• Motor velocity changes with time/
terrain/torque 

• Wheels/gears slip 
• Servos get stuck 
• Etc… 

Actuator Command 



Example: Bike in straight line 
• Steer the bike in a straight line 

blindfolded 
• Open loop ! no sensor feedback 
• What if you hit a rock? 
• What if the handle bars aren’t 

perpendicular to the wheels? 



Example: Bike in a straight line 
•  If you can see the pavement ! 

Closed Loop Approach 
•  Control based on error: PID 
•  Proportional : Change handle angle 

proportional to the current error  
•  Derivative : Large handle corrections 

when error is changing slowly, and 
small handle corrections when error is 
changing quickly 

•  Integral : Handle corrections based on 
the cumulative error 



Problem: Set Motor Velocity 
Open Loop Controller 
–  Use trial and error to create 

relationship between velocity 
and voltage 

–  Problems 
•  Supply voltage change 
•  Bumps in carpet 
•  Motor Transients 

Motor Velocity 
To Volts 

Desired 
Velocity 

Actual 
Velocity 



Controller 

Problem: Set Motor Velocity 

Closed Loop Controller 
– Feedback is used so that 

the actual velocity equals 
the desired velocity 

– Can use an optical encoder 
to measure actual velocity 

Motor Desired 
Velocity 

Actual 
Velocity Adjusted 

Voltage 
err 



Step response  
with no controller 
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•  Naive velocity to volts 
•  Model motor with 

several differential 
equations 

•  Slow rise time 
•  Stead-state offset 

Motor Velocity 
To Volts 

Desired 
Velocity 

Actual 
Velocity 



Step response  
with proportional controller 
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•  Big error big = big adj 
•  Faster rise time 
•  Overshoot 
•  Steady-state offset 

(there is still an error 
but it is not changing!) 

Controller Motor 

Desired 
Velocity 
(Vdes) 

Actual 
Velocity 

(Vact) Adjusted 
Volts (X) 

err 



Step response  
with PD controller 
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•  When approaching desired 
velocity quickly, de/dt term 
counteracts proportional 
term slowing adjustment 

•  Faster rise time 
•  Reduces overshoot 

Controller Motor 

Desired 
Velocity 
(Vdes) 

Actual 
Velocity 

(Vact) Adjusted 
Volts (X) 

err 



Step response  
with PI controller 
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•  Integral term eliminates 
accumulated error 

•  Increases overshoot 

Controller Motor 

Desired 
Velocity 
(Vdes) 

Actual 
Velocity 

(Vact) Adjusted 
Volts (X) 

err 



Step response  
with PID controller 
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Controller Motor 

Desired 
Velocity 
(Vdes) 

Actual 
Velocity 

(Vact) Adjusted 
Volts (X) 

err 



Choosing and tuning  
a controller 

Rise Time Overshoot SS Error 

Proportional Decrease Increase Decrease 

Integral Decrease Increase Eliminate 

Derivative ~ Decrease ~ 

© 1996 Regents of UMich -- http://www.engin.umich.edu/group.ctm 

Controller Motor 

Desired 
Velocity 
(Vdes) 

Actual 
Velocity 

(Vact) Adjusted 
Volts (X) 

err 



Controller Design: Root Locus 

Re(s) 

Im(s) 

Proportional 

Re(s) 

Im(s) 

Proportional/Derivative 

Re(s) 

Im(s) 

PID 

Faster Slower 

Unstable 

Oscillatory 

Oscillatory 

Smooth 

Current controlled motor 



Sampling Time, Noise, Limits 
•  When you learn PID, you learn it in continuous models 
•  For the discrete world, sampling time is another variable! 
•  Say you tune your PID and you sample every 0.01 seconds 
•  Then you write more code, add more threads 
•  At the end, you sample every 0.04 seconds.  This affects your system and you may 

have to retune your PID! 
•  Take aways: 

–  Set a constant sampling time* and stick with it! 
–  Controller unstable due to noise?  Low pass filter signal before controlling! 
–  Response speed is limited by slew rate and max output of electronics 

Sampling every 0.01s Sampling every 0.04s 

*Nyquist dictates 2x, but in practice at least 5x greater than fastest characteristic 



Other Control Loop Uses 

Controller Servo 
Motor 

Actual 
Shaft 

Position 
Adjusted 

Volts err 

Controller Drive 
Motors 

Actual 
Velocity 

Adjusted 
Volts err 

Controller Differential 
Drive 

Actual 
Angle to 
Red Ball 

Adjusted 
Differential err 

Desired 
Shaft 

Position 

Desired 
Velocity 

Desired 
Angle to 
Red Ball 

Potentiometer 

Camera 

Camera 



Matlab Examples 
• motorContructor ! Create a basic motor structure 

• motorSetVoltage ! Set the motor voltage 

• motorStepResponse ! Find unit step response for a motor 

• motorPID ! Find unit step response for a motor with PID 

• robotPID ! differential drive robot with two independent PID loops 

• plotRobotTrajectory ! plot the trajectory of robotPID 

*Thanks to Christopher Batten for the code 



Choosing and tuning  
a controller 

•  Set constant sampling time 
•  Tuning PID constants can be tricky 

•  Use control system theory as a guide! 
•  Guess system parameters and simulate. 

•  Use gain scheduling for nonlinearities 
•  Use different PID constants for different situations. 

•  Make PID parameters tunable without reuploading code 
•  Use an interactive tuning program. 
•  Once decided, then hard code constants in. 

Controller Motor 

Desired 
Velocity 
(Vdes) 

Actual 
Velocity 

(Vact) Adjusted 
Volts (X) 

err 



MIMO Systems 
•  Multiple Input (gyro and two encoders) /

Multiple Output (two motors) 
•  Want to control displacement and rotation 
•  Method 1 (easiest method) 

–  1. Decouple the system 
–  2. Build linear single input / single 

output controllers around each 
decoupled parameter. 

–  3. Execute displacement 
–  4. Execute rotation (executing 

simultaneously could be buggier) 
•  Easy method for driving straight 

–  Set a moderate speed for one wheel 
–  Have PID running on the other wheel 
–  Use the gyroscope to drive straight. 



We can synchronize the motors  
with a third PID controller 

Left 
Controller 

Left 
Motor 

Desired 
Velocity 

Actual 
Left 

Velocity err 

Right 
Controller 

Right 
Motor 

err 

Coupled 
Controller 

Actual 
Right 

Velocity 

Inspired from “Mobile Robots”, Jones, Flynn, and Seiger, 1999  

Turning 
Bias 



We can synchronize the motors  
with a third PID controller 

What should the coupled           
controller use as its error input? 
 Velocity Differential  

–  Will simply help the robot                         
go straight but not                        
necessarily straight ahead 

 Cumulative Centerline Offset  
–  Calculate by integrating motor velocities 

and assuming differential steering 
model for the robot 

–  Will help the robot go straight ahead 
Alternatives: 

–  Gyro 
–  Camera 

Left 
Controller 

Left 
Motor 

Desired 
Velocity 

Actual 
Left 

Velocity err 

Right 
Controller 

Right 
Motor 

err 

Coupled 
Controller 

Actual 
Right 

Velocity 

Turning 
Bias 



Robot driving in a straight line 

Model differential drive with slight motor mismatch 
With an open loop controller, setting motors to same velocity 

results in a less than straight trajectory 

Trajectory Motor Velocities vs Time 



Robot driving in a straight line 

With an independent PID controller for each motor,                 
setting motors to same velocity results in a straight trajectory 

but not necessarily straight ahead! 

Trajectory Motor Velocities vs Time 



Alternatives: Gyro or Camera 
–  Track how far ball 

center is from center of 
image 

–  Use analytical model of 
projection to determine 
an orientation error  

–  Push error through    
PID controller 

What if we just used a simple proportional 
controller? Could lead to steady-state error if 

motors are not perfectly matched!  



Example Videos 



Java Examples 
Wall Following without PID 

http://web.mit.edu/6.186/2008/lectures/pid/wallfollow/index.html  

Wall Following with PID 

http://web.mit.edu/6.186/2008/lectures/pid/wallfollowpid/index.html  

Driving Straight without PID 

http://web.mit.edu/6.186/2008/lectures/pid/towardball/index.html  

Driving Straight with PID 

http://web.mit.edu/6.186/2008/lectures/pid/towardballpid/index.html  

*Thanks to Dany Qumsiyeh 



5 Lines of PID Code 
while(true) {  

 ba = Camera.getballangle;      //Get the ball angle from some other function 
 if (abs(ba) > ANGLETOLERANCE) //Drive Straight  
 {  
 ml = -1;  //Left Motor Command 
 mr = 1;   //Right Motor Command  
 } 
 else {  
 float adj = anglePID(ba, 2, 0.2, 0.2);  //Call PID controller to adjust heading 
 ml = (1 – adj);  
 mr = (1 + adj);  
 }  

}  

float lasterr = 0;   //Variables to be saved between calls 
float integral = 0;  

float anglePID(float err, float Kp, float Ki, float Kd) { 
 integral += err; 
 float deriv = err – lasterr; 
 float output = Kp*err + Ki*integral + Kd*deriv; 
 lasterr = err; 
 return output; 

} 

This code for driving 
towards a ball has 5 lines 
of PID code!  



More Advanced Controllers 

•  There is more to controls than PID! 
– Lead/lag controllers 
– Kalman and Adaptive filters 
– Full state feedback 
– Observers 
– Feedforward 
– Nonlinear Systems 
– Etc… 



Kalman Filtering 
•  Recursive method of estimating linear 

system dynamics in a noisy 
environment 

•  Can simultaneously determine system 
parameters and be used to control the 
system. 

• How does it work? 
– Use a vector to represent system dynamics (impulse response) 
– Collect input and output information and solve for system dynamics 
– Every time a new data point is obtained, we can recursively add this information 
to our system representation vector (known as update). 

• Drawbacks 
– Computational power to invert matricies (time and resources) 
– Needs forgetting factor 



Adaptive Controller 
•  Self-adjusts estimation of 

system parameters (vector) 
•  Slightly faster run time  
•  Only remembers the most 

recent data on system 
dynamics 

•  Learning time when the 
program starts 

Learning Time 

Desired 
Measured 

ALS (Inverse 
Plant) 

Plant 
+ 

-

error Veldesired 

Velmeasured 

Vcommand 



Filter Design  
•  Continuous Filters 

–  In the real world, time is continuous.  
–  We are constantly getting inputs and 

giving outputs 
–  Analog circuits 

•  Discrete Filters 
–  When using computers, we get discrete 

samples at a given sampling rate 
–  FIR Filters (Finite Impulse Response) 
–  IIR Filters (Infinite Impulse Response) 

•  Filter Types 
–  Low Pass –allows low frequencies to 

pass through 
–  High Pass – allows high frequencies 
–  Band Pass- allows a bands of 

frequencies to pass 
Pole/Zero plot for FIR filter 



Example: FIR Filter 
•  Lets say you have a signal and 

your sensor is very noisy 
•  Could be IR sensor, ultrasound, or 

even an image 
•  How do you separate actual signal 

from the noise? 
•  Use an FIR digital filter (in your 

code) 
•  y(n) ! filter output at time n 
•  x(n-k) ! sensor input at time n-k 
•  b ! weighting constants given by 

Matlab 
•  N ! filter order given by Matlab 



Example: FIR filter 

•  Create band pass filter 
•  Recover the band of frequencies 

where the actual signal is 
•  Special Notes 

–  The better the filter, the higher 
the order (N) 

–  The lag in the filter is 
approximately N/2 samples 



Matlab Code 
• PIDController.m ! Script for testing a simple PID 
controller with arbitrary desired inputs. 

• RLSController.m ! Kalman filter controls example 

• ALSController.m ! Simple Adaptive controls example 

• Filter.m ! Create and test any signal filter 

*Code written by Ellen Yi Chen 



Extensions 
•  Controls and signal processing are powerful tools (6.003, 2.004, etc…) 

–  Modeling of physical systems 
•  Given parameters of a system, how do we determine how it will act to a given input 
•  Etc… 

–  Control schemes 
•  Deterministic control schemes 
•  PID controllers 
•  Fuzzy logic controllers 
•  Etc… 

–  Signal processing 
•  Discrete and continuous methods 
•  Filters: Low-pass, high-pass, band-pass, notch 
•  Frequency domain techniques 
•  Echo removal 
•  Autocorrelation techniques 
•  Etc… 

–  System identification 
•  For an unknown black box system, how do we find the transfer function? 
•  Impulse invariant, swept sine, stochastic methods 
•  Parametric techniques, nonparametric techniques 
•  Etc… 



Take Aways 
•  Why do we need controllers? 

–  Motors are not matched 
–  Your center of mass is not in the middle of your robot 
–  Signals are noisy 

•  Use a PID Controller to simplify driving code 
–  Motor Speed: Encoders 
–  Robot angle: Gyro 
–  Robot trajectory: Gyro and Camera 

•  Controllers will: 
–  Make your robot move and respond faster 
–  Make motions smoother 
–  Help abstract physics away from desired response 
–  Save you from headaches! 
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