
Controls and Signals

Maslab IAP 2011
Ellen Yi Chen

yichen@mit.edu

Agenda

•  What do we mean by controls?
•  Simple PID Controller
•  Robot Drive Controller
•  Examples
•  Kalman, ALS, Filters
•  Extensions

What are Controls?

•  “High” Level Control Paradigms
–  Model/Plan/Act
–  Emergent
–  FSM (Finite State Machine)

•  “Low” Level Control Loops
–  Motor Velocity
–  Robot Angular Position
–  Etc…

Why can’t we just tell the robot to go at 0.2m/s in a
straight line?

What are Controls?

Sensors Information

Sensors are far from perfect
• Camera white balance
• Encoder quantization error
• Ultrasound reflections
• Infrared sensors noisy
• Etc…

Actuators are far from perfect
• Motor velocity changes with time/
terrain/torque

• Wheels/gears slip
• Servos get stuck
• Etc…

Actuator Command

Example: Bike in straight line
• Steer the bike in a straight line

blindfolded
• Open loop ! no sensor feedback
• What if you hit a rock?
• What if the handle bars aren’t

perpendicular to the wheels?

Example: Bike in a straight line
•  If you can see the pavement !

Closed Loop Approach
•  Control based on error: PID
•  Proportional : Change handle angle

proportional to the current error
•  Derivative : Large handle corrections

when error is changing slowly, and
small handle corrections when error is
changing quickly

•  Integral : Handle corrections based on
the cumulative error

Problem: Set Motor Velocity
Open Loop Controller
–  Use trial and error to create

relationship between velocity
and voltage

–  Problems
•  Supply voltage change
•  Bumps in carpet
•  Motor Transients

Motor Velocity
To Volts

Desired
Velocity

Actual
Velocity

Controller

Problem: Set Motor Velocity

Closed Loop Controller
– Feedback is used so that

the actual velocity equals
the desired velocity

– Can use an optical encoder
to measure actual velocity

Motor Desired
Velocity

Actual
Velocity Adjusted

Voltage
err

Step response
with no controller

Time (sec)

Ve
lo

ci
ty

•  Naive velocity to volts
•  Model motor with

several differential
equations

•  Slow rise time
•  Stead-state offset

Motor Velocity
To Volts

Desired
Velocity

Actual
Velocity

Step response
with proportional controller

Time (sec)

Ve
lo

ci
ty

•  Big error big = big adj
•  Faster rise time
•  Overshoot
•  Steady-state offset

(there is still an error
but it is not changing!)

Controller Motor

Desired
Velocity
(Vdes)

Actual
Velocity

(Vact) Adjusted
Volts (X)

err

Step response
with PD controller

Time (sec)

Ve
lo

ci
ty

•  When approaching desired
velocity quickly, de/dt term
counteracts proportional
term slowing adjustment

•  Faster rise time
•  Reduces overshoot

Controller Motor

Desired
Velocity
(Vdes)

Actual
Velocity

(Vact) Adjusted
Volts (X)

err

Step response
with PI controller

Time (sec)

Ve
lo

ci
ty

•  Integral term eliminates
accumulated error

•  Increases overshoot

Controller Motor

Desired
Velocity
(Vdes)

Actual
Velocity

(Vact) Adjusted
Volts (X)

err

Step response
with PID controller

Time (sec)

Ve
lo

ci
ty

Controller Motor

Desired
Velocity
(Vdes)

Actual
Velocity

(Vact) Adjusted
Volts (X)

err

Choosing and tuning
a controller

Rise Time Overshoot SS Error

Proportional Decrease Increase Decrease

Integral Decrease Increase Eliminate

Derivative ~ Decrease ~

© 1996 Regents of UMich -- http://www.engin.umich.edu/group.ctm

Controller Motor

Desired
Velocity
(Vdes)

Actual
Velocity

(Vact) Adjusted
Volts (X)

err

Controller Design: Root Locus

Re(s)

Im(s)

Proportional

Re(s)

Im(s)

Proportional/Derivative

Re(s)

Im(s)

PID

Faster Slower

Unstable

Oscillatory

Oscillatory

Smooth

Current controlled motor

Sampling Time, Noise, Limits
•  When you learn PID, you learn it in continuous models
•  For the discrete world, sampling time is another variable!
•  Say you tune your PID and you sample every 0.01 seconds
•  Then you write more code, add more threads
•  At the end, you sample every 0.04 seconds. This affects your system and you may

have to retune your PID!
•  Take aways:

–  Set a constant sampling time* and stick with it!
–  Controller unstable due to noise? Low pass filter signal before controlling!
–  Response speed is limited by slew rate and max output of electronics

Sampling every 0.01s Sampling every 0.04s

*Nyquist dictates 2x, but in practice at least 5x greater than fastest characteristic

Other Control Loop Uses

Controller Servo
Motor

Actual
Shaft

Position
Adjusted

Volts err

Controller Drive
Motors

Actual
Velocity

Adjusted
Volts err

Controller Differential
Drive

Actual
Angle to
Red Ball

Adjusted
Differential err

Desired
Shaft

Position

Desired
Velocity

Desired
Angle to
Red Ball

Potentiometer

Camera

Camera

Matlab Examples
• motorContructor ! Create a basic motor structure

• motorSetVoltage ! Set the motor voltage

• motorStepResponse ! Find unit step response for a motor

• motorPID ! Find unit step response for a motor with PID

• robotPID ! differential drive robot with two independent PID loops

• plotRobotTrajectory ! plot the trajectory of robotPID

*Thanks to Christopher Batten for the code

Choosing and tuning
a controller

•  Set constant sampling time
•  Tuning PID constants can be tricky

•  Use control system theory as a guide!
•  Guess system parameters and simulate.

•  Use gain scheduling for nonlinearities
•  Use different PID constants for different situations.

•  Make PID parameters tunable without reuploading code
•  Use an interactive tuning program.
•  Once decided, then hard code constants in.

Controller Motor

Desired
Velocity
(Vdes)

Actual
Velocity

(Vact) Adjusted
Volts (X)

err

MIMO Systems
•  Multiple Input (gyro and two encoders) /

Multiple Output (two motors)
•  Want to control displacement and rotation
•  Method 1 (easiest method)

–  1. Decouple the system
–  2. Build linear single input / single

output controllers around each
decoupled parameter.

–  3. Execute displacement
–  4. Execute rotation (executing

simultaneously could be buggier)
•  Easy method for driving straight

–  Set a moderate speed for one wheel
–  Have PID running on the other wheel
–  Use the gyroscope to drive straight.

We can synchronize the motors
with a third PID controller

Left
Controller

Left
Motor

Desired
Velocity

Actual
Left

Velocity err

Right
Controller

Right
Motor

err

Coupled
Controller

Actual
Right

Velocity

Inspired from “Mobile Robots”, Jones, Flynn, and Seiger, 1999

Turning
Bias

We can synchronize the motors
with a third PID controller

What should the coupled
controller use as its error input?
 Velocity Differential

–  Will simply help the robot
go straight but not
necessarily straight ahead

 Cumulative Centerline Offset
–  Calculate by integrating motor velocities

and assuming differential steering
model for the robot

–  Will help the robot go straight ahead
Alternatives:

–  Gyro
–  Camera

Left
Controller

Left
Motor

Desired
Velocity

Actual
Left

Velocity err

Right
Controller

Right
Motor

err

Coupled
Controller

Actual
Right

Velocity

Turning
Bias

Robot driving in a straight line

Model differential drive with slight motor mismatch
With an open loop controller, setting motors to same velocity

results in a less than straight trajectory

Trajectory Motor Velocities vs Time

Robot driving in a straight line

With an independent PID controller for each motor,
setting motors to same velocity results in a straight trajectory

but not necessarily straight ahead!

Trajectory Motor Velocities vs Time

Alternatives: Gyro or Camera
–  Track how far ball

center is from center of
image

–  Use analytical model of
projection to determine
an orientation error

–  Push error through
PID controller

What if we just used a simple proportional
controller? Could lead to steady-state error if

motors are not perfectly matched!

Example Videos

Java Examples
Wall Following without PID

http://web.mit.edu/6.186/2008/lectures/pid/wallfollow/index.html

Wall Following with PID

http://web.mit.edu/6.186/2008/lectures/pid/wallfollowpid/index.html

Driving Straight without PID

http://web.mit.edu/6.186/2008/lectures/pid/towardball/index.html

Driving Straight with PID

http://web.mit.edu/6.186/2008/lectures/pid/towardballpid/index.html

*Thanks to Dany Qumsiyeh

5 Lines of PID Code
while(true) {

 ba = Camera.getballangle; //Get the ball angle from some other function
 if (abs(ba) > ANGLETOLERANCE) //Drive Straight
 {
 ml = -1; //Left Motor Command
 mr = 1; //Right Motor Command
 }
 else {
 float adj = anglePID(ba, 2, 0.2, 0.2); //Call PID controller to adjust heading
 ml = (1 – adj);
 mr = (1 + adj);
 }

}

float lasterr = 0; //Variables to be saved between calls
float integral = 0;

float anglePID(float err, float Kp, float Ki, float Kd) {
 integral += err;
 float deriv = err – lasterr;
 float output = Kp*err + Ki*integral + Kd*deriv;
 lasterr = err;
 return output;

}

This code for driving
towards a ball has 5 lines
of PID code!

More Advanced Controllers

•  There is more to controls than PID!
– Lead/lag controllers
– Kalman and Adaptive filters
– Full state feedback
– Observers
– Feedforward
– Nonlinear Systems
– Etc…

Kalman Filtering
•  Recursive method of estimating linear

system dynamics in a noisy
environment

•  Can simultaneously determine system
parameters and be used to control the
system.

• How does it work?
– Use a vector to represent system dynamics (impulse response)
– Collect input and output information and solve for system dynamics
– Every time a new data point is obtained, we can recursively add this information
to our system representation vector (known as update).

• Drawbacks
– Computational power to invert matricies (time and resources)
– Needs forgetting factor

Adaptive Controller
•  Self-adjusts estimation of

system parameters (vector)
•  Slightly faster run time
•  Only remembers the most

recent data on system
dynamics

•  Learning time when the
program starts

Learning Time

Desired
Measured

ALS (Inverse
Plant)

Plant
+

-

error Veldesired

Velmeasured

Vcommand

Filter Design
•  Continuous Filters

–  In the real world, time is continuous.
–  We are constantly getting inputs and

giving outputs
–  Analog circuits

•  Discrete Filters
–  When using computers, we get discrete

samples at a given sampling rate
–  FIR Filters (Finite Impulse Response)
–  IIR Filters (Infinite Impulse Response)

•  Filter Types
–  Low Pass –allows low frequencies to

pass through
–  High Pass – allows high frequencies
–  Band Pass- allows a bands of

frequencies to pass
Pole/Zero plot for FIR filter

Example: FIR Filter
•  Lets say you have a signal and

your sensor is very noisy
•  Could be IR sensor, ultrasound, or

even an image
•  How do you separate actual signal

from the noise?
•  Use an FIR digital filter (in your

code)
•  y(n) ! filter output at time n
•  x(n-k) ! sensor input at time n-k
•  b ! weighting constants given by

Matlab
•  N ! filter order given by Matlab

Example: FIR filter

•  Create band pass filter
•  Recover the band of frequencies

where the actual signal is
•  Special Notes

–  The better the filter, the higher
the order (N)

–  The lag in the filter is
approximately N/2 samples

Matlab Code
• PIDController.m ! Script for testing a simple PID
controller with arbitrary desired inputs.

• RLSController.m ! Kalman filter controls example

• ALSController.m ! Simple Adaptive controls example

• Filter.m ! Create and test any signal filter

*Code written by Ellen Yi Chen

Extensions
•  Controls and signal processing are powerful tools (6.003, 2.004, etc…)

–  Modeling of physical systems
•  Given parameters of a system, how do we determine how it will act to a given input
•  Etc…

–  Control schemes
•  Deterministic control schemes
•  PID controllers
•  Fuzzy logic controllers
•  Etc…

–  Signal processing
•  Discrete and continuous methods
•  Filters: Low-pass, high-pass, band-pass, notch
•  Frequency domain techniques
•  Echo removal
•  Autocorrelation techniques
•  Etc…

–  System identification
•  For an unknown black box system, how do we find the transfer function?
•  Impulse invariant, swept sine, stochastic methods
•  Parametric techniques, nonparametric techniques
•  Etc…

Take Aways
•  Why do we need controllers?

–  Motors are not matched
–  Your center of mass is not in the middle of your robot
–  Signals are noisy

•  Use a PID Controller to simplify driving code
–  Motor Speed: Encoders
–  Robot angle: Gyro
–  Robot trajectory: Gyro and Camera

•  Controllers will:
–  Make your robot move and respond faster
–  Make motions smoother
–  Help abstract physics away from desired response
–  Save you from headaches!

References
•  Christopher Batten, “Controls for Mobile Robot,” 2007,

http://maslab.mit.edu/2007/wiki/Control_lecture.
•  Dany Qumsiyeh, Controls scripts 2008,

http://maslab.mit.edu/2008/wiki/PID.

