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Goals for this talk

 Why should I build a map?

 Three mapping algorithms

 Forgetful local map

 Really easy, very useful over short time scales (seconds to a minute)

 Topological roadmap

 Also really easy, moderately useful over arbitrary time scales

 World’s simplest—but powerful—SLAM algorithm

 A taste of the ―real thing‖.



Attack Plan

• Motivation and Advice

• Algorithms:

– Forgetful Map

– Topological Map

– SLAM

• Sensor Comments



Why build a map?

• Playing field is big, robot is slow

• Driving around perimeter takes a 

minute!

• Scoring takes time… often ~20 

seconds to ―line up‖ to a mouse 

hole.



Maslab Mapping Goals

 Be able to efficiently move to specific locations 
that we have previously seen
 I’ve got a bunch of balls, where’s the nearest goal?

 Be able to efficiently explore unseen areas
 Don’t re-explore the same areas over and over

 Build a map for its own sake
 No better way to wow your 

competition/friends/audience.



A little advice

 Mapping is hard! And it’s not required to do 

okay.

 Concentrate on basic robot competencies first

 Design your algorithms so that map information is 

helpful, but not required

 Pick your mapping algorithm judiciously

 Pick something you’ll have time to implement and test

 Lots of newbie gotchas, like 2pi wrap-around



Visualization

 Visualization is critical

 Impossible to debug your code unless you 
can see what’s happening

Write code to view your maps and publish 
them!

 Nobody will appreciate your map if they can’t 
see it.



Attack Plan

• Motivation and Advice

• Algorithms:

– Forgetful Map

– Topological Map

– SLAM

• Sensor Comments



Forgetful Local Map

 It’s as good as your dead-reckoning

 Estimate your dead-reckoning error, don’t 

use data that’s useless.

Don’t throw it away though– log it.

 Easy to implement



Dead-Reckoning

 Compute robot’s position in an arbitrary coordinate 
system

x = Σ di *  cos(θi)

y = Σ di *  sin(θi)

θi = ΣΔθi

 Easy to compute:

 Get di from wheel encoders (or back EMF-derived velocity?)

 Get Δθi from gyro

 Actually, integration done for you



The problem with dead-reckoning

 Error accumulates over time

 Really fast– errors in θi cause super-linear increases in error

 Use zero-velocity update 

 Distance error proportional to measured distance

 Anywhere from 10-50% depending on sensors

 Gyro error mostly a function of time.

 About 1-5 degrees per minute.



World’s simplest (metrical) map

• Every time you see something, record it in a 
list

• Looking for something?
– Search backwards in the list

• Don’t use old data

– Estimate distance/theta error by subtracting 
cumulative error estimates

– If theta error > 30 degrees or so 
 bearing is bad

– If distance error > 30% of distance to object
 bearing is bad

– (These constants made up– you’ll need to 
experiment!)

Cumulative 

Distance/

Orientation 

error

What
Location

(x,y)

(0.2, 0.1) Goal (2.3, 1.1)

(0.4, 0.15) Robot Pose (2.0, 1.0)

(1.0, 0.2) Barcode 2.4, 1.2)

(2.0, 0.22) Barcode (3.5, .3)

(2.5, 0.3) Robot Pose (3.0, 1.0)
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Zero-velocity updates

 Gyros accumulate error as a function of 

integration time

Even if you’re not moving

 Idea: if robot is stationary, stop gyro 

integration  stop error accumulation



Attack Plan

• Motivation and Advice

• Algorithms:

– Forgetful Map

– Topological Map

– SLAM

• Sensor Comments



Topological Maps

 Learn and remember invariant properties in the world:

 ―I can see barcodes 3 and 7 when I’m sitting next to barcode 12‖

 De-emphasize metrical data

 Maybe remember ―when I drove directly from barcode 2 to 
barcode 7, it was about 3.5 meters‖

 Very easy!

 But you can probably only put barcodes (maybe goals) into the 
map



Topological Maps

 Nodes in graph are easily 
identifiable features

 E.g., barcodes

 Each node lists things ―near‖ or 
visible to it

 Other bar codes 

 Goals, maybe balls

 Implicitly encode obstacles

 Walls obstruct visibility!

 Want to get somewhere? 

 Drive to the nearest barcode, 
then follow the graph.



Topological Maps - Challenges

 Building map takes time

 Repeated 360 degree sensor 
sweeps

 Solutions sub-optimal

 (But better than random walk!)

 You may have to resort to 
random walking when your 
graph is incomplete

 Hard to visualize since you 
can’t recover the actual 
positions of positions



Attack Plan

• Motivation and Advice

• Algorithms:

– Forgetful Map

– Topological Map

– SLAM

• Sensor Comments



Brute-Force SLAM

 Simultaneous Localization and Mapping (SLAM)

 The following approach is exact, complete
 (Is used in the ―real world‖)

 I’ll show a version that works, but isn’t particularly 
scalable.

 Break out the 18.06!
 Weren’t paying attention? Quick refresher coming…



Quick math review

 Linear approximation to arbitrary functions

 f(x) = x2

 near x = 3,  f(x) ≈ 9 + 6 (x-3)

 f(x,y,z) = (some mess)

 near (x0, y0, z0):  f(x) ≈ F0 + [                     ]

f(3) + * (x-3)

Δx

Δy

Δz

df

dx
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dz

df

dx



Quick math review

df

dx

Δx

Δy

Δz

df

dy

df

dz

J               d       =     r

f(x) = f0 + [                           ]

=   f(x) – f0
df

dx

Δx

Δy

Δz

df

dy

df

dz
[                           ]

From previous 

slide:

Linear Algebra

 notation:

Re-arrange:



Example

 We observe range zd and heading zθ to a 

feature. 

We express our observables in terms of the state 

variables (x* y* theta*) and noise variables (v*)
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Example

 Compute a linear approximation of these 

constraints:

 Differentiate these constraints with respect to 

the state variables

End up with something of the form Jd = r
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Example
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Metrical Map example

By convention,

this pose is (0,0,0)

Unknown variables

(x,y,theta) per pose

Constraints (arising from odometry)

=

J           d  =  r

Odometry 

Constraint 

Equations

Robot 

positions

number unknowns==number of equations, solution is critically determined.

d = J-1r



Metrical Map example

The feature 

gives us more 

unknowns

Observations 

give us more 

equations =

Odometry 

constraint 

equations

Poses

Observation 

equations

number unknowns < number of equations, solution is over determined. 

Least-squares solution is:

d = (JTJ)-1JTr

More equations = better pose estimate

J d = r



Computational Cost

 The least-squares solution to the mapping 
problem:

 Must invert* a matrix of size 3Nx3N (N = number 
of poses.) Inverting this matrix costs O(N3)!
 N is pretty small for maslab

 How big can N get before this is a problem?

 JAMA, Java Matrix library

d = (JTWJ)-1JTWb

xi+1=xi+d

•* We’d never actually invert it; it’s betterto use a Cholesky Decomposition or something 

similar. But it has the same computational complexity. JAMA will do the right thing.



State of the Art

 Simple! Just solve

d = (JTWJ)-1JTWb

faster, using less memory.

(many a PhD Thesis. Hopefully good for at least one more)



Metrical Map - Weighting

 Some sensors (and constraints) better 

than others

 Put weights in block-diagonal matrix W

 What is the interpretation of JTWJ?

d = (JTWJ)-1JTWr
W =

weight of eqn 1
weight of eqn 2



What does all this math get us?

 Okay, so why bother?



Odometry Trajectory

 Integrating odometry data yields a 
trajectory

 Uncertainty of pose increases at every 
step

Odometry Data



Metrical Map example

1. Original Trajectory with 

odometry constraints

2. Observe external feature

Initial feature uncertainty = 

pose uncertainty + 

observation uncertainty

3. Reobserving feature helps 

subsequent pose estimates



Attack Plan

• Motivation and Advice

• Algorithms:

– Forgetful Map

– Topological Map

– SLAM

• Sensor Comments



Getting Data - Odometry

 Roboticists bread-and-butter

 You should use odometry in some form, if only to detect if your robot is moving 
as intended

 ―Dead-reckoning‖ : estimate motion by counting wheel rotations

 Encoders (binary or quadrature phase)

 Maslab-style encoders are very poor

 Motor modeling

 Model the motors, measure voltage and current across them to infer the motor 
angular velocity

 Angular velocity can be used for dead-reckoning

 Pretty lousy method, but possibly better than low-resolution flaky encoders



Getting Data - Camera

 Useful features can be extracted!

 Lines from white/blue boundaries

 Balls (great point features! Just 
delete them after you’ve moved 
them.)

 ―Accidental features‖

 You can estimate bearing and
distance.

 Camera mounting angle has effect 
on distance precision

 Triangulation

 Make bearing measurement

 Move robot a bit (keeping odometry 
error small)

 Make another bearing measurement

More features = better 

navigation performance



Range finders

 Range finders are most direct way of locating 
walls/obstacles.

 Build a ―LIDAR‖ by putting a range finder on a 
servo

 High quality data! Great for mapping!

 Terribly slow.

 At least a second per scan.

 With range of > 1 meter, you don’t have to scan very 
often.

 Two range-finders = twice as fast
 Or alternatively, 360o coverage

 Hack servo to read analog pot directly
 Then slew the servo in one command at maximum 

speed instead of stepping.

 Add gearbox to get 360o coverage with only one range 
finder.



Parting Words

 Many issues we didn’t cover

Data Association

 Good reference:

Probabilistic Robotics. S. Thrun, W. 

Burgard, D. Fox.



Questions?





Extended Kalman Filter

• x : vector of all the state you care about (same as 

before)

• P : covariance matrix (same as (JTWJ)-1 before)

• Time update:

– x’=f(x,u,0)

– P=APAT+BQBT
 adding noise to covariance

A = Jacobian of f wrt x

B = Jacobian of noise wrt x

Q = covariance of odometry 

 integrate odometry



Metrical Map - Weighting

 Some sensors (and constraints) better 

than others

 Put weights in block-diagonal matrix W

 What is the interpretation of JTWJ?

d = (JTWJ)-1JTWr
W =

weight of eqn 1
weight of eqn 2



Correlation/Covariance

 In multidimensional Gaussian 
problems, equal-probability 
contours are ellipsoids.

 Shoe size doesn’t affect 
grades:
P(grade,shoesize)=P(grade)P(shoesize)

 Studying helps grades:
P(grade,studytime)!=P(grade)P(studytime)

 We must consider P(x,y) jointly, 
respecting the correlation!

 If I tell you the grade, you learn 
something about study time.

Time spent studying

Shoe Size
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Why is covariance useful?

 Loop Closing (and Data 

Association)

 Suppose you observe a goal 

(with some uncertainty)

 Which previously-known goal is 

it?

 Or is it a new one?

 Covariance information helps 

you decide

 If you can tell the difference 

between goals, you can use them 

as navigational land marks!

You observe a goal here

Previously known goals



Extended Kalman Filter

 Observation

K = PHT(HPHT + VRVT)-1

x’=x+K(z-h(x,0))

P=(I-KH)P

 P is your covariance matrix

Just like (JTWJ)-1

 Kalman ―gain‖

H = Jacobian of constraint wrt x

B = Jacobian of noise wrt x

R = covariance of constraint



Kalman Filter: Properties

 You incorporate sensor observations one at a time.

 Each successive observation is the same amount of 
work (in terms of CPU).

 Yet, the final estimate is the global optimal solution.

 The same solution we would have gotten using least-squares. 
Almost.

The Kalman Filter is an optimal, 

recursive estimator.



Kalman Filter: Properties

 In the limit, features become highly correlated

 Because observing one feature gives information 

about other features

 Kalman filter computes the posterior pose, but 

not the posterior trajectory.

 If you want to know the path that the robot traveled, 

you have to make an extra ―backwards‖ pass.



Kalman Filter: Shortcomings

• With N features, update 
time is still large: O(N2)!

• For Maslab, N is small. 
Who cares?

• In the ―real world‖, N can 
be >>106.

• Linearization Error

• Current research: lower-
cost mapping methods



Old Slides



Kalman Filter

• Example: Estimating where 

Jill is standing:

– Alice says: x=2

• We think σ2 =2; she wears 

thick glasses

– Bob says: x=0

• We think σ2 =1; he’s pretty 

reliable

• How do we combine these 

measurements?
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Simple Kalman Filter

• Answer: algebra (and a little 

calculus)!

– Compute mean by finding 

maxima of the log probability 

of the product PAPB.

– Variance is messy; consider 

case when PA=PB=N(0,1)

• Try deriving these 

equations at home!
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Kalman Filter Example

• We now think Jill is at:
– x = 0.66

– σ2 =0.66

• Note: Observations 
always reduce 
uncertainty

– Even in the face of 
conflicting information, 
EKF never becomes 
less certain.
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Kalman Filter

• Now Jill steps forward 
one step

• We think one of Jill’s 
steps is about 1 meter,
σ2 =0.5

• We estimate her position:
– x=xbefore+xchange

– σ2 =  σbefore
2 + σchange

2

• Uncertainty increases -5 -4 -3 -2 -1 0 1 2 3 4 5
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Data Association

 Data association: The problem of 
recognizing that an object you see now is 
the same one you saw before

Hard for simple features (points, lines)

Easy for ―high-fidelity‖ features (barcodes, 
bunker hill monuments)

 With perfect data association, most 
mapping problems become ―easy‖



Data Association

 If we can’t tell when we’re reobserving a 

feature, we don’t learn anything!

We need to observe the same feature twice to 

generate a constraint.



Data Association: Bar Codes

 Trivial!

 The Bar Codes have unique IDs; 

read the ID.



Data Association: Nearest Neighbor

 Nearest Neighbor

Simplest data 

association ―algorithm‖

Only tricky part is 

determining when you’re 

seeing a brand-new 

feature.

You observe a goal here

Previously known goals



Data Association: Tick Marks

 The blue tick marks can be 
used as features too.
 Probably hard to tell that a 

particular tick mark is the one you 
saw 4 minutes ago…

 You only need to reobserve the 
same feature twice to benefit!

 If you can track them over short 
intervals, you can use them to 
improve your dead-reckoning.
 Use nearest-neighbor. Your frame-to-

frame uncertainty should only be a 
few pixels.



Data Association: Tick Marks

 Ideal situation:

Lots of tick marks, randomly arranged

Good position estimates on all tick marks

 Then we search for a rigid-body-

transformation that best aligns the points.



Data Association: Tick Marks

 Find a rotation that aligns the most tick marks…

Gives you data association for matched ticks

Gives you rigid body transform for the robot!

Rotation+Translation





Metrical Map: Cost Function

 Cost function could be 

arbitrarily complicated

 Optimization of these is 

intractable

 We can make a local 

approximation around the 

current pose estimates

 Resembles the arbitrary cost 

function in that neighborhood

 Typically Gaussian

Distance between pose 1 and 2
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Metrical Map: Real World Cost Function

Cost function arising from aligning two LADAR scans



Nonlinear optimization: Relaxation

 Consider each 

pose/feature:

 Fix all others 

features/poses

 Solve for the position of 

the unknown pose

 Repeat many times

Will converge to minimum

Works well on small maps

Pose/Feature Graph



Nonlinear Map Optimization

Movie goes 

here



Occupancy Grids

• Divide the world into a 

grid

– Each grid records whether 

there’s something there or 

not

• Usually as a probability

– Use current robot position 

estimate to fill in squares 

according to sensor 

observations



Occupancy Grids

• Easy to generate, hard to maintain accuracy

– Basically impossible to ―undo‖ mistakes

• Convenient for high-quality path planning

• Relatively easy to tell how well you’re doing

– Do your sensor observations agree with your map?



FastSLAM (Gridmap variant)

 Suppose you maintain a whole bunch of 
occupancy maps
 Each assuming a slightly different robot trajectory

 When a map becomes inconsistent, throw it 
away.

 If you have enough occupancy maps, you’ll get a 
good map at the end.



Gridmap, a la MASLab

 Number of maps you need increases exponentially with 
distance travelled. (Rate constant related to odometry 
error)

 Build grid maps until odometry error becomes too large, 
then start a new map.

 Try to find old maps which contain data about your 
current position

 Relocalization is usually hard, but you have unambiguous 
features to help.



Occupancy Grid: Path planning

 Use A* search
 Finds optimal path (subject to grid resolution)

 Large search space, but optimum answer is easy to find

 search(start, end)
 Initialize paths = set of all paths leading out of cell ―start‖

 Loop:

 let p be the best path in paths
 Metric = distance of the path + 

straight-line distance from last cell in path to goal

 if p reaches end, return p

 Extend path p in all possible directions, adding those paths to paths



Occupancy Grid: Path planning

 How do we do path planning with EKFs?

 Easiest way is to rasterize an occupancy 

grid on demand

Either all walls/obstacles must be features 

themselves, or

Remember a local occupancy grid of where 

walls were at each pose.



Attack Plan

• Motivation and Terminology

• Mapping Methods

– Topological

– Metrical

• Data Association

• Sensor Ideas and Tips



Finding a rigid-body transformation

 Method 1 (silly)

 Search over all possible rigid-body transformations until you find one 
that works

 Compare transformations using some ―goodness‖ metric.

 Method 2 (smarter)

 Pick two tick marks in both scene A and scene B

 Compute the implied rigid body transformation, compute some 
―goodness‖ metric.

 Repeat. 

 If there are N tick marks, M of which are in both scenes, how many trials do 
you need? Minimum: (M/N)2

 This method is called ―RANSAC‖, RANdom SAmple Consenus



Attack Plan

• Motivation and Terminology

• Mapping Methods

– Topological

– Metrical

• Data Association

• Sensor Ideas and Tips



Debugging map-building algorithms

 You can’t debug what you can’t see.

 Produce a visualization of the map!

 Metrical map: easy to draw

 Topological map: draw the graph (using graphviz/dot?)

 Display the graph via BotClient

 Write movement/sensor observations to a file to test 
mapping independently (and off-line)



Today’s Lab Activities



Bayesian Estimation

• Represent unknowns with 

probability densities

– Often, we assume the 

densities are Gaussian

– Or we represent arbitrary 

densities with particles

• We won’t cover this today
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Metrical Map example

 Some constraints are 
better than others.

 Incorporate constraint 
―weights‖

Weights are closely 
related to covariance:

W = Σ-1

 Covariance of poses is:

ATWA

W =

x = (ATWA)-1ATWb

weight of eqn 1

weight of eqn 2

In principle, equations might 

not represent independent 

constraints. But usually they 

are, so these terms are zero.

* Of course, ―covariance‖ only makes good sense if we make a Gaussian assumption





Map representations

Pose/Feature GraphOccupancy Grid



Graph representations

 Occupancy Grids:

 Useful when you have 

dense range information 

(LIDAR)

 Hard to undo mistakes

 I don’t recommend 

this…



Graph representations

 Pose/Feature graphs
 Metrical

 Edges contain relative position 
information

 Topological

 Edges imply ―connectivity‖

 Sometimes contain ―costs‖ too 
(maybe even distance)

 If you store ranging 
measurements at each pose, 
you can generate an occupancy 
grid from a pose graph

Pose/Feature Graph



Metrical Maps

 Advantages:
 Optimal paths

 Easier to visualize

 Possible to distinguish different goals, use them as 
navigational features

 Way cooler 

 Disadvantages:
 There’s going to be some math.

 *gasp* Partial derivatives!



State Correlation/Covariance

 We observe features relative to the robot’s 
current position

Therefore, feature location estimates covary
(or correlate) with robot pose.

 Why do we care?

We get the wrong answer if we don’t consider 
correlations

Covariance is useful!



Metrical Map

 Once we’ve solved for 
the position of each 
pose, we can re-project 
the observations of 
obstacles made at each 
pose into a coherent 
map

 That’s why we kept 
track of the old poses, 
and why N grows!



Metrical Map

 What if we only want to estimate:

 Positions of each goal

 Positions of each barcode

 Current position of the robot?

 The Kalman filter is our best choice now.

 Almost the same math!

 Not enough time to go into it: but slides are on wiki


