Mapping and Navigation Principles and Shortcuts

January 6th, 2011

Slides from Edwin Olson's 2008 presentation Presented by Eric Timmons etimmons@mit.edu

M

Goals for this talk

- Why should I build a map?
- Three mapping algorithms
 - □ Forgetful local map
 - Really easy, very useful over short time scales (seconds to a minute)
 - Topological roadmap
 - Also really easy, moderately useful over arbitrary time scales
 - World's simplest—but powerful—SLAM algorithm
 - A taste of the "real thing".

Attack Plan

- Motivation and Advice
- Algorithms:
 - Forgetful Map
 - Topological Map
 - SLAM
- Sensor Comments

v

Why build a map?

Playing field is big, robot is slow

Driving around perimeter takes a minute!

 Scoring takes time... often ~20 seconds to "line up" to a mouse hole.

м

Maslab Mapping Goals

- Be able to efficiently move to specific locations that we have previously seen
 - I've got a bunch of balls, where's the nearest goal?
- Be able to efficiently explore unseen areas
 - Don't re-explore the same areas over and over
- Build a map for its own sake
 - No better way to wow your competition/friends/audience.

A little advice

- Mapping is hard! And it's not required to do okay.
 - □ Concentrate on basic robot competencies first
 - Design your algorithms so that map information is helpful, but not required
 - Pick your mapping algorithm judiciously
 - Pick something you'll have time to implement and test
 - Lots of newbie gotchas, like 2pi wrap-around

Visualization

- Visualization is critical
 - Impossible to debug your code unless you can see what's happening
 - □ Write code to view your maps and publish them!
 - Nobody will appreciate your map if they can't see it.

Attack Plan

- Motivation and Advice
- Algorithms:
 - Forgetful Map
 - Topological Map
 - SLAM
- Sensor Comments

Forgetful Local Map

It's as good as your dead-reckoning

- Estimate your dead-reckoning error, don't use data that's useless.
 - □ Don't throw it away though log it.

Easy to implement

×

Dead-Reckoning

Compute robot's position in an arbitrary coordinate system

$$x = \sum_{i=1}^{n} d_{i} * \cos(\theta_{i})$$

$$y = \sum_{i=1}^{n} d_{i} * \sin(\theta_{i})$$

$$\theta_{i} = \sum_{i=1}^{n} \Delta \theta_{i}$$

- Easy to compute:
 - Get d_i from wheel encoders (or back EMF-derived velocity?)
 - □ Get $\Delta\theta_i$ from gyro
 - Actually, integration done for you

The problem with dead-reckoning

- Error accumulates over time
 - \square Really fast— errors in θ_i cause super-linear increases in error
 - ☐ Use zero-velocity update
- Distance error proportional to measured distance
 - Anywhere from 10-50% depending on sensors
- Gyro error mostly a function of time.
 - About 1-5 degrees per minute.

World's simplest (metrical) map

- Every time you see something, record it in a list
- Looking for something?
 - Search backwards in the list
- Don't use old data
 - Estimate distance/theta error by subtracting cumulative error estimates
 - If theta error > 30 degrees or so
 → bearing is bad
 - If distance error > 30% of distance to object
 → bearing is bad
 - (These constants made up— you'll need to experiment!)

Older data

Cumulative Distance/ Orientation error	What	Location (x,y)
(0.2, 0.1)	Goal	(2.3, 1.1)
(0.4, 0.15)	Robot Pose	(2.0, 1.0)
(1.0, 0.2)	Barcode	2.4, 1.2)
(2.0, 0.22)	Barcode	(3.5, .3)
(2.5, 0.3)	Robot Pose	(3.0, 1.0)

Zero-velocity updates

- Gyros accumulate error as a function of integration time
 - □ Even if you're not moving

■ Idea: if robot is stationary, stop gyro integration → stop error accumulation

Attack Plan

- Motivation and Advice
- Algorithms:
 - Forgetful Map
 - Topological Map
 - SLAM
- Sensor Comments

Topological Maps

- Learn and remember invariant properties in the world:
 - □ "I can see barcodes 3 and 7 when I'm sitting next to barcode 12"
- De-emphasize metrical data
 - Maybe remember "when I drove directly from barcode 2 to barcode 7, it was about 3.5 meters"
- Very easy!
 - But you can probably only put barcodes (maybe goals) into the map

Topological Maps

- Nodes in graph are easily identifiable features
 - □ E.g., barcodes
- Each node lists things "near" or visible to it
 - Other bar codes
 - □ Goals, maybe balls
- Implicitly encode obstacles
 - Walls obstruct visibility!
- Want to get somewhere?
 - Drive to the nearest barcode, then follow the graph.

Topological Maps - Challenges

- Building map takes time
 - Repeated 360 degree sensor sweeps
- Solutions sub-optimal
 - □ (But better than random walk!)
- You may have to resort to random walking when your graph is incomplete
- Hard to visualize since you can't recover the actual positions of positions

Attack Plan

- Motivation and Advice
- Algorithms:
 - Forgetful Map
 - Topological Map
 - SLAM
- Sensor Comments

Brute-Force SLAM

- Simultaneous Localization and Mapping (SLAM)
- The following approach is exact, complete
 - □ (Is used in the "real world")
 - ☐ I'll show a version that works, but isn't particularly scalable.
- Break out the 18.06!
 - Weren't paying attention? Quick refresher coming...

.

Quick math review

Linear approximation to arbitrary functions

•
$$f(x) = x^2$$

□
$$near x = 3$$
, $f(x) \approx 9 + 6 (x-3)$

$$f(3) + \frac{df}{dx} * (x-3)$$

• f(x,y,z) = (some mess)

□ near
$$(x_0, y_0, z_0)$$
: $f(x) \approx F_0 + \left[\frac{df}{dx} \frac{df}{dy} \frac{df}{dz} \right] \begin{vmatrix} \Delta x \\ \Delta y \\ \Delta z \end{vmatrix}$

Quick math review

From previous slide:

$$f(x) = f_0 + \begin{bmatrix} \frac{df}{dx} & \frac{df}{dy} & \frac{df}{dz} \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \end{bmatrix}$$

Re-arrange:

$$f(x) - f_0$$

Linear Algebra notation:

Example

- We observe range z_d and heading z_θ to a feature.
 - □ We express our observables in terms of the state variables (x_{*} y_{*} theta_{*}) and noise variables (v_{*})

$$h = \begin{cases} z_d = [(x_f - x_r)^2 + (y_f - y_r)^2]^{1/2} + v_d \\ z_\theta = \arctan 2(y_f - y_r, x_f - x_r) - x_\theta + v_\theta \end{cases}$$

м

Example

$$h = \begin{cases} z_d = [(x_f - x_r)^2 + (y_f - y_r)^2]^{1/2} + v_d \\ z_\theta = \arctan 2(y_f - y_r, x_f - x_r) - x_\theta + v_\theta \end{cases}$$

- Compute a *linear* approximation of these constraints:
 - Differentiate these constraints with respect to the state variables
 - \square End up with something of the form Jd = r

Example

$$h = \begin{cases} z_d = [(x_f - x_r)^2 + (y_f - y_r)^2]^{1/2} + v_d \\ z_\theta = \arctan 2(y_f - y_r, x_f - x_r) - \theta_r + v_\theta \end{cases}$$

A convenient substitution: $\lambda = 1/(1+(d_v/d_x))^2$

$\mathbf{z}_{d} = \begin{bmatrix} -d_x/d & -d_y/d & 0 & d_x/d \end{bmatrix}$	d_y/d	
$ \frac{\mathbf{Z}_{d}}{\mathbf{Z}_{theta}} \mathbf{J} = \begin{vmatrix} -d_x/d & -d_y/d & 0 & d_x/d \\ \lambda d_y/d_x^2 & -\lambda/d_x & -1 & -\lambda d_y/d \end{vmatrix} $	$\int_{x}^{2} \lambda d_{x}$	

H = Jacobian of**h**with respect to**x**

Metrical Map example

number unknowns==number of equations, solution is critically determined.

$$d = J^{-1}r$$

number unknowns < number of equations, solution is *over determined*. Least-squares solution is:

$$d = (J^T J)^{-1} J^T r$$

More equations = better pose estimate

M

Computational Cost

The least-squares solution to the mapping problem:

$$d = (J^{T}WJ)^{-1}J^{T}Wb$$
$$x_{i+1}=x_i+d$$

- Must invert* a matrix of size 3Nx3N (N = number of poses.) Inverting this matrix costs O(N³)!
 - □ N is pretty small for maslab
 - □ How big can N get before this is a problem?
- JAMA, Java Matrix library

* We'd never actually invert it; it's betterto use a Cholesky Decomposition or something similar. But it has the same computational complexity. JAMA will do the right thing.

M

State of the Art

Simple! Just solve

$$d = (J^{T}WJ)^{-1}J^{T}Wb$$

faster, using less memory.

(many a PhD Thesis. Hopefully good for at least one more)

10

Metrical Map - Weighting

- Some sensors (and constraints) better than others
- Put weights in block-diagonal matrix W

$$W = \int_{\text{weight of eqn 2}}^{\text{weight of eqn 1}} d = (J^TWJ)^{-1}J^TWr$$

■ What is the interpretation of J^TWJ?

What does all this math get us?

Okay, so why bother?

Odometry Trajectory

Integrating odometry data yields a trajectory

Uncertainty of pose increases at every step

Metrical Map example

1. Original Trajectory with odometry constraints

2. Observe external feature

Initial feature uncertainty = pose uncertainty + observation uncertainty

3. Reobserving feature helps subsequent pose estimates

Attack Plan

- Motivation and Advice
- Algorithms:
 - Forgetful Map
 - Topological Map
 - SLAM
- Sensor Comments

Getting Data - Odometry

- Roboticists bread-and-butter
 - You should use odometry in some form, if only to detect if your robot is moving as intended
- "Dead-reckoning": estimate motion by counting wheel rotations
 - Encoders (binary or quadrature phase)
 - Maslab-style encoders are very poor
- Motor modeling
 - Model the motors, measure voltage and current across them to infer the motor angular velocity
 - Angular velocity can be used for dead-reckoning
 - □ Pretty lousy method, but possibly better than low-resolution flaky encoders

Getting Data - Camera

- Useful features can be extracted!
 - Lines from white/blue boundaries
 - □ Balls (great point features! Just delete them after you've moved them.)
 - "Accidental features"
- You can estimate bearing and distance.
 - Camera mounting angle has effect on distance precision
- Triangulation
 - Make bearing measurement
 - Move robot a bit (keeping odometry error small)
 - ☐ Make another bearing measurement

More features = better navigation performance

Range finders

- Range finders are most direct way of locating walls/obstacles.
- Build a "LIDAR" by putting a range finder on a servo
 - High quality data! Great for mapping!
 - Terribly slow.
 - At least a second per scan.
 - With range of > 1 meter, you don't have to scan very often.
 - Two range-finders = twice as fast
 - □ Or alternatively, 360° coverage
 - Hack servo to read analog pot directly
 - Then slew the servo in one command at maximum speed instead of stepping.
 - Add gearbox to get 360° coverage with only one range finder.

Parting Words

- Many issues we didn't cover
 - □ Data Association
- Good reference: Probabilistic Robotics. S. Thrun, W. Burgard, D. Fox.

M

Extended Kalman Filter

- x : vector of all the state you care about (same as before)
- P : covariance matrix (same as (J^TWJ)⁻¹ before)

Time update:

-x'=f(x,u,0)

 $- P = APA^T + BQB^T$

← integrate odometry

← adding noise to covariance

A = Jacobian of f wrt x

B = Jacobian of noise wrt x

Q = covariance of odometry

re.

Metrical Map - Weighting

- Some sensors (and constraints) better than others
- Put weights in block-diagonal matrix W

$$W = \int_{\text{weight of eqn 1}}^{\text{weight of eqn 1}} d = (J^TWJ)^{-1}J^TWr$$

■ What is the interpretation of J^TWJ?

Correlation/Covariance

- In multidimensional Gaussian problems, equal-probability contours are ellipsoids.
- Shoe size doesn't affect grades: P(grade,shoesize)=P(grade)P(shoesize)
- Studying helps grades: P(grade,studytime)!=P(grade)P(studytime)
 - □ We must consider P(x,y) jointly, respecting the correlation!
 - ☐ If I tell you the grade, you learn something about study time.

Why is covariance useful?

- Loop Closing (and Data Association)
- Suppose you observe a goal (with some uncertainty)
 - Which previously-known goal is it?
 - □ Or is it a new one?
- Covariance information helps you decide
 - □ If you can tell the difference between goals, you can use them as navigational land marks!

v

Extended Kalman Filter

Observation

```
□ K = PH<sup>T</sup>(HPH<sup>T</sup> + VRV<sup>T</sup>)<sup>-1</sup> ← Kalman "gain"

□ x'=x+K(z-h(x,0))

□ P=(I-KH)P

H = Jacobian of constraint wrt x

B = Jacobian of noise wrt x

R = covariance of constraint
```

- P is your covariance matrix
 - □ Just like (J^TWJ)⁻¹

Kalman Filter: Properties

- You incorporate sensor observations one at a time.
- Each successive observation is the same amount of work (in terms of CPU).
- Yet, the final estimate is the global optimal solution.
 - The same solution we would have gotten using least-squares. Almost.

The Kalman Filter is an *optimal*, recursive estimator.

Kalman Filter: Properties

- In the limit, features become highly correlated
 - Because observing one feature gives information about other features
- Kalman filter computes the posterior pose, but not the posterior trajectory.
 - ☐ If you want to know the path that the robot traveled, you have to make an extra "backwards" pass.

Kalman Filter: Shortcomings

- With N features, update time is still large: O(N²)!
- For Maslab, N is small.
 Who cares?
- In the "real world", N can be >>10⁶.
- Linearization Error
- Current research: lowercost mapping methods

Kalman Filter

- Example: Estimating where Jill is standing:
 - Alice says: x=2
 - We think σ^2 =2; she wears thick glasses
 - Bob says: x=0
 - We think σ^2 =1; he's pretty reliable
- How do we combine these measurements?

М

Simple Kalman Filter

- Answer: algebra (and a little calculus)!
 - Compute mean by finding maxima of the log probability of the product P_AP_B.
 - Variance is messy; consider case when P_A=P_B=N(0,1)
- Try deriving these equations at home!

- x = 0.66
- $-\sigma^2 = 0.66$
- Note: Observations always reduce uncertainty
 - Even in the face of conflicting information, 0.15
 EKF never becomes 0.1
 less certain. 0.05

100

Kalman Filter

- Now Jill steps forward one step
- We think one of Jill's steps is about 1 meter, $\sigma^2 = 0.5$
- We estimate her position:

$$- \sigma^2 = \sigma_{before}^2 + \sigma_{change}^2$$

Uncertainty increases

Data Association

- Data association: The problem of recognizing that an object you see now is the same one you saw before
 - □ Hard for simple features (points, lines)
 - □ Easy for "high-fidelity" features (barcodes, bunker hill monuments)
- With perfect data association, most mapping problems become "easy"

Data Association

- If we can't tell when we're reobserving a feature, we don't learn anything!
 - We need to observe the same feature *twice* to generate a constraint.

Data Association: Bar Codes

Trivial!

The Bar Codes have unique IDs; read the ID.

Data Association: Nearest Neighbor

- Nearest Neighbor
 - □ Simplest data association "algorithm"
 - Only tricky part is determining when you're seeing a brand-new feature.

Data Association: Tick Marks

- The blue tick marks can be used as features too.
 - Probably hard to tell that a particular tick mark is the one you saw 4 minutes ago...
 - ☐ You only need to reobserve the same feature *twice* to benefit!
 - If you can track them over short intervals, you can use them to improve your dead-reckoning.
 - Use nearest-neighbor. Your frame-toframe uncertainty should only be a few pixels.

Data Association: Tick Marks

- Ideal situation:
 - Lots of tick marks, randomly arranged
 - □ Good position estimates on all tick marks
- Then we search for a *rigid-body-transformation* that best aligns the points.

Data Association: Tick Marks

- Find a rotation that aligns the most tick marks...
 - Gives you data association for matched ticks
 - ☐ Gives you rigid body transform for the robot!

Metrical Map: Cost Function

- Cost function could be arbitrarily complicated
 - Optimization of these is intractable
- We can make a local approximation around the current pose estimates
 - Resembles the arbitrary cost function in that neighborhood
 - □ Typically Gaussian

Metrical Map: Real World Cost Function

Cost function arising from aligning two LADAR scans

Nonlinear optimization: Relaxation

- Consider each pose/feature:
 - □ Fix all others features/poses
 - Solve for the position of the unknown pose
- Repeat many times
 - □ Will converge to minimum
 - □ Works well on small maps

Pose/Feature Graph

Nonlinear Map Optimization

- Divide the world into a grid
 - Each grid records whether there's something there or not
 - Usually as a probability
 - Use current robot position estimate to fill in squares according to sensor observations

Occupancy Grids

- Easy to generate, hard to maintain accuracy
 - Basically impossible to "undo" mistakes
- Convenient for high-quality path planning

- Relatively easy to tell how well you're doing
 - Do your sensor observations agree with your map?

FastSLAM (Gridmap variant)

- Suppose you maintain a whole bunch of occupancy maps
 - □ Each assuming a slightly different robot trajectory
- When a map becomes inconsistent, throw it away.
- If you have enough occupancy maps, you'll get a good map at the end.

Gridmap, a la MASLab

- Number of maps you need increases exponentially with distance travelled. (Rate constant related to odometry error)
- Build grid maps until odometry error becomes too large, then start a new map.
- Try to find old maps which contain data about your current position
 - □ Relocalization is usually hard, but you have unambiguous features to help.

×

Occupancy Grid: Path planning

- Use A* search
 - ☐ Finds optimal path (subject to grid resolution)
 - Large search space, but optimum answer is easy to find
- search(start, end)
 - Initialize paths = set of all paths leading out of cell "start"
 - □ Loop:
 - let p be the best path in paths
 - Metric = distance of the path +
 straight-line distance from last cell in path to goal
 - if **p** reaches **end**, return **p**
 - Extend path **p** in all possible directions, adding those paths to **paths**

Occupancy Grid: Path planning

- How do we do path planning with EKFs?
- Easiest way is to rasterize an occupancy grid on demand
 - ☐ Either all walls/obstacles must be features themselves, *or*
 - □ Remember a local occupancy grid of where walls were at each pose.

Attack Plan

- Motivation and Terminology
- Mapping Methods
 - Topological
 - Metrical
- Data Association
- Sensor Ideas and Tips

Finding a rigid-body transformation

- Method 1 (silly)
 - Search over all possible rigid-body transformations until you find one that works
 - Compare transformations using some "goodness" metric.
- Method 2 (smarter)
 - Pick two tick marks in both scene A and scene B
 - Compute the implied rigid body transformation, compute some "goodness" metric.
 - □ Repeat.
 - If there are N tick marks, M of which are in both scenes, how many trials do you need? Minimum: (M/N)²
 - This method is called "RANSAC", RANdom SAmple Consenus

Attack Plan

- Motivation and Terminology
- Mapping Methods
 - Topological
 - Metrical
- Data Association
- Sensor Ideas and Tips

Debugging map-building algorithms

- You can't debug what you can't see.
- Produce a visualization of the map!
 - Metrical map: easy to draw
 - Topological map: draw the graph (using graphviz/dot?)
 - □ Display the graph via BotClient
- Write movement/sensor observations to a file to test mapping independently (and off-line)

Bayesian Estimation

- Represent unknowns with probability densities
 - Often, we assume the densities are Gaussian

$$P(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/\sigma^2}$$

- Or we represent arbitrary densities with particles
 - We won't cover this today

Metrical Map example

- Some constraints are better than others.
- Incorporate constraint "weights"
 - Weights are closely related to covariance:

$$W = \Sigma^{-1}$$

□ Covariance of poses is:A^TWA

In principle, equations might not represent independent constraints. But usually they are, so these terms are zero.

$$x = (A^TWA)^{-1}A^TWb$$

^{*} Of course, "covariance" only makes good sense if we make a Gaussian assumption

Map representations

Occupancy Grid

Pose/Feature Graph

- Occupancy Grids:
 - Useful when you have dense range information (LIDAR)
 - Hard to undo mistakes
- I don't recommend this...

Graph representations

- Pose/Feature graphs
 - Metrical
 - Edges contain relative position information
 - Topological
 - Edges imply "connectivity"
 - Sometimes contain "costs" too (maybe even distance)
- If you store ranging measurements at each pose, you can generate an occupancy grid from a pose graph

Pose/Feature Graph

1

Metrical Maps

- Advantages:
 - Optimal paths
 - Easier to visualize
 - Possible to distinguish different goals, use them as navigational features
 - Way cooler
- Disadvantages:
 - ☐ There's going to be some math.
 - *gasp* Partial derivatives!

×

State Correlation/Covariance

- We observe features relative to the robot's current position
 - □ Therefore, feature location estimates covary (or correlate) with robot pose.
- Why do we care?
 - We get the wrong answer if we don't consider correlations
 - □ Covariance is useful!

Metrical Map

- Once we've solved for the position of each pose, we can re-project the observations of obstacles made at each pose into a coherent map
- That's why we kept track of the old poses, and why N grows!

M

Metrical Map

- What if we only want to estimate:
 - Positions of each goal
 - □ Positions of each barcode
 - □ *Current* position of the robot?
- The Kalman filter is our best choice now.
 - Almost the same math!
 - Not enough time to go into it: but slides are on wiki