
Behavior for Mobile Robots

Bhaskar Mookerji
(updated from Chris Batten’s IAP 2007 Talk)

Maslab IAP Robotics Course
January 4, 2011

What is so hard about designing
a mobile robot controller?

Sensors

Sensors are far from perfect
Camera white balance = bad colors
Ultrasound reflections
Infrared sensors can be noisy
 … and many more!

Actuators are far from perfect
Motor velocity changes over time
Wheels and gears slip
Servos get stuck
 … and many more!

Actuators

Even if the world was perfect, the sheer
complexity of a robot can be daunting

Mechanical Electrical Software

Don’t just code a control system,
design a control system!

• How will you debug and test your robot?
• What are the performance requirements?
• Can you easily improve aspects of your robot?
• Can you easily integrate new functionality?

Just as you must carefully design your
robot chassis you must carefully design

your robot control system

An example of how not to design your
robot control system

void moveForward(int time) {

 while (t < time) {

 // Drive forward a bit

 }
}

An example of how not to design your
robot control system

void moveForward(int time) {

 while (t < time) {

 // Drive forward a bit

 // Check ir sensor and stop if necessary

 }
}

An example of how not to design your
robot control system

void moveForward(int time) {

 while (t < time) {

 // Drive forward a bit

 // Check ir sensor and stop if necessary

 // Rotate if there is an obstacle

 }
}

An example of how not to design your
robot control system

void moveForward(int time) {

 while (t < time) {

 // Drive forward a bit

 // Check ir sensor and stop if necessary

 // Rotate if there is an obstacle

 // Need to find some balls

 // Somehow pick up a ball

 // What if there is more than one ball?

 }
}

An example of how not to design your
robot control system

void moveForward(int time) {

 while (t < time) {

 // Drive forward a bit

 // Check ir sensor and stop if necessary

 // Rotate if there is an obstacle

 // Need to find some balls

 // Somehow pick up a ball

 // What if there is more than one ball?

 . . .

 . . .

 // Need to find some goals

 // What if there are no goals visible?

 // Drop off some balls

 // Find more balls I guess

 // Make sure to ignore balls in goal

 // Try to go somewhere new

 }
}

An example of how not to design your
robot control system

void moveForward(int time) {

 while (t < time) {

 // Drive forward a bit

 // Check ir sensor and stop if necessary

 // Rotate if there is an obstacle

 // Need to find some balls

 // Somehow pick up a ball

 // What if there is more than one ball?

 // Need to find some goals

 // What if there are no goals visible?

 // Drop off some balls

 // Find more balls I guess

 // Make sure to ignore balls in goal

 . . .

 // Need to find some goals

 // What if there are no goals visible?

 // Drop off some balls

 // Find more balls I guess

 // Make sure to ignore balls in goal

 // Try to go somewhere new

 // Find more balls I guess

 // Make sure to ignore balls in goal

 // Try to go somewhere new

 }
}

void moveForward(int time)
 while (t < time) {

Basic primitive
of a control system is a behavior

Turn right 90° Go forward until reach obstacle

Capture a ball Explore playing field

Behaviors should be well-defined,
self-contained, and independently testable

Key objective is to compose behaviors
so as to achieve the desired goal

Outline
• High-level control system paradigms

–  Model-Plan-Act Approach
–  Emergent Approach
–  Finite State Machine Approach

• Low-level control loops (Tomorrow)
–  PID controllers for motor velocity
–  PID controllers for robot drive system

• Examples from past years

Model-Plan-Act Approach

1.  Use sensor data to create model of the world
2.  Use model to form a sequence of behaviors

which will achieve the desired goal
3.  Execute the plan (compose behaviors)

M
od

el

Actuators Sensors

P
la

n

A
ct

Environment

Exploring the playing field
to create a model of the world

Red dot is the mobile robot
while the blue line is the mousehole

Exploring the playing field
to create a model of the world

Robot uses sensors to create local map of the
world and identify unexplored areas

Exploring the playing field
to create a model of the world

Robot moves to midpoint of
unexplored boundary

Exploring the playing field
to create a model of the world

Robot performs a second sensor scan and
must align the new data with the global map

Exploring the playing field
to create a model of the world

Robot continues to explore
the playing field

Exploring the playing field
to create a model of the world

Robot must recognize when it starts to
see areas which it has already explored

Finding a path to the mousehole
using the convex cell algorithm

Given the global map,
the goal is to find the mousehole

Finding a path to the mousehole
using the convex cell algorithm

Transform world into configuration space
by convolving robot with all obstacles

Finding a path to the mousehole
using the convex cell algorithm

Decompose world into convex cells
Trajectory within any cell is free of obstacles

Finding a path to the mousehole
using the convex cell algorithm

Connect cell edge midpoints and centroids to
get graph of all possible paths

Finding a path to the mousehole
using the convex cell algorithm

Use an algorithm (such as the A*
algorithm) to find shortest path to goal

Finding a path to the mousehole
using the convex cell algorithm

The choice of cell decomposition can
greatly influence results

Finding a path to the mousehole
using the Voronoi cell algorithm

Create a Voronoi partitioning - paths are
equidistant from obstacles

Finding a path to the mousehole
using the Voronoi cell algorithm

Treat Voronoi paths as “highways”
Maximally avoids obstacles

Example using Voronoi path planning
in real world office environment

http://www.cs.columbia.edu/~pblaer/projects/path_planner

Advantages and disadvantages
of the model-plan-act approach

• Advantages
–  Global knowledge in the model enables optimization
–  Can make provable guarantees about the plan

• Disadvantages
–  Must implement all functional units before any testing
–  Computationally intensive
–  Requires very good sensor data for accurate models
–  Models are inherently an approximation
–  Works poorly in dynamic environments

Emergent Approach

Living creatures like honey bees are
able to explore their surroundings

and locate a target (honey)

Is this bee using the
model-plan-act

approach?

Used with permission, © William Connolley
http://wnconnolley.ork.uk

Emergent Approach

Living creatures like honey bees are
able to explore their surroundings

and locate a target (honey)

Probably not! Most likely
bees layer simple

reactive behaviors to
create a complex

emergent behavior

Used with permission, © William Connolley
http://wnconnolley.ork.uk

Emergent Approach

Should we design our robots so they act less
like robots and more like honey bees?

Emergent Approach

Actuators Sensors

Behavior C

Behavior B

Behavior A

Environment

As in biological systems, the emergent approach uses
simple behaviors to directly couple sensors and actuators

Higher level behaviors are layered
on top of lower level behaviors

To illustrate the emergent approach
we will consider a simple mobile robot

Bump Switches

Infrared Rangefinders

Ball Detector Switch

Camera

Ball Gate

Layering simple behaviors can create
much more complex emergent behavior

Cruise behavior simply moves robot forward

Cruise Motors

Layering simple behaviors can create
much more complex emergent behavior

Left motor speed inversely proportional to left IR range
Right motor speed inversely proportional to right IR range

If both IR < threshold stop and turn right 120 degrees

Cruise

Avoid Infrared

Motors Arbiter

Layering simple behaviors can create
much more complex emergent behavior

Escape behavior stops motors,
backs up a few inches, and turns right 90 degrees

Cruise

Avoid

Escape

Infrared

Bump

Motors Arbiter

Layering simple behaviors can create
much more complex emergent behavior

The track ball behavior adjusts the
motor differential to steer the robot towards the ball

Cruise

Avoid

Escape

Track Ball

Infrared

Bump

Camera

Motors Arbiter

Layering simple behaviors can create
much more complex emergent behavior

Hold ball behavior simply closes ball gate
when ball switch is depressed

Cruise

Avoid

Escape

Track Ball

Hold Ball

Infrared

Bump

Camera

Motors Arbiter

Ball Gate
Ball

Switch

Layering simple behaviors can create
much more complex emergent behavior

The track goal behavior opens the ball gate and
adjusts the motor differential to steer the robot towards

the goal

Cruise

Avoid

Escape

Track Ball

Hold Ball

Track Goal

Infrared

Bump

Camera

Ball
Switch

Motors Arbiter

Arb

Ball Gate

Layering simple behaviors can create
much more complex emergent behavior

Cruise

Avoid

Escape

Track Ball

Hold Ball

Track Goal

Infrared

Bump

Camera

Ball
Switch

Motors Arbiter

Arb

Ball Gate

Arbitration Techniques
 - Fixed priority
 - Round-robin
 - Random
 - Merge messages
 - Vote

Bsim robot simulator
illustrates emergent approach

http://www.behaviorbasedprogramming.com

Controller architecture for
collection simulation

From “Robot Programming: A Practical Guide to Behavior Based Robotics”, Joseph Jones

Advantages and disadvantages
of the behavioral approach

• Advantages
–  Incremental development is very natural
–  Modularity makes experimentation easier
–  Cleanly handles dynamic environments

• Disadvantages
–  Difficult to judge what robot will actually do
–  No performance or completeness guarantees
–  Debugging can be very difficult

Model-plan-act fuses sensor data,
while emergent fuses behaviors

M
od

el

P
la

n

A
ct

Environment

Behavior C

Behavior B

Behavior A

Model-Plan-Act Emergent

Environment

Fixed plan of behaviors Layered behaviors
Lots of preliminary planning No preliminary planning

Lots of internal state Very little internal state

Finite State Machines offer another
alternative for combining behaviors

Fwd
(dist)

TurnR
(deg)

Fwd behavior moves robot
straight forward a given distance

TurnR behavior turns robot to the
right a given number of degrees

FSMs have some preliminary planning and some state.
Some transitions between behaviors are decided
statically while others are decided dynamically.

TurnR
(90°)

Finite State Machines offer another
alternative for combining behaviors

Fwd
(2ft)

Fwd
(2ft)

Each state is just a specific behavior
instance - link them together to create

an open loop control system

TurnR
(90°)

Finite State Machines offer another
alternative for combining behaviors

Fwd
(2ft)

Fwd
(2ft)

Each state is just a specific behavior
instance - link them together to create

an open loop control system

TurnR
(90°)

Finite State Machines offer another
alternative for combining behaviors

Fwd
(2ft)

Fwd
(2ft)

Each state is just a specific behavior
instance - link them together to create

an open loop control system

TurnR
(90°)

Finite State Machines offer another
alternative for combining behaviors

Fwd
(2ft)

Fwd
(2ft)

Each state is just a specific behavior
instance - link them together to create

an open loop control system

TurnR
(90°)

Finite State Machines offer another
alternative for combining behaviors

Fwd
(2ft)

Fwd
(2ft)

Since the Maslab playing field is
unknown, open loop control systems

have no hope of success!

TurnR
(45°)

Finite State Machines offer another
alternative for combining behaviors

Fwd
(1ft)

Closed loop finite state machines use
sensor data as feedback to make

state transitions

No Obstacle

Obstacle
Within 2ft

No
Obstacle

Obstacle
Within 2ft

TurnR
(45°)

Finite State Machines offer another
alternative for combining behaviors

Fwd
(1ft)

No Obstacle

Obstacle
Within 2ft

No
Obstacle

Obstacle
Within 2ft

Closed loop finite state machines use
sensor data as feedback to make

state transitions

TurnR
(45°)

Finite State Machines offer another
alternative for combining behaviors

Fwd
(1ft)

No Obstacle

Obstacle
Within 2ft

No
Obstacle

Obstacle
Within 2ft

Closed loop finite state machines use
sensor data as feedback to make

state transitions

TurnR
(45°)

Finite State Machines offer another
alternative for combining behaviors

Fwd
(1ft)

No Obstacle

Obstacle
Within 2ft

No
Obstacle

Obstacle
Within 2ft

Closed loop finite state machines use
sensor data as feedback to make

state transitions

TurnR
(45°)

Finite State Machines offer another
alternative for combining behaviors

Fwd
(1ft)

No Obstacle

Obstacle
Within 2ft

No
Obstacle

Obstacle
Within 2ft

Closed loop finite state machines use
sensor data as feedback to make

state transitions

Implementing a
Finite State Machine in Java

switch (state) {

 case States.Fwd_1 :
 moveFoward(1);
 if (distanceToObstacle() < 2)
 state = TurnR_45;
 break;

 case States.TurnR_45 :
 turnRight(45);
 if (distanceToObstacle() >= 2)
 state = Fwd_1;
 break;

}

TurnR
(45°)

Fwd
(1ft)

No Obstacle

Obstacle
Within 2ft

Obstacle
Within 2ft

•  Implement
behaviors as
parameterized
functions

•  Each case
statement includes
behavior instance
and state transition

•  Use enums for
state variables

Implementing a
FSM in Java

switch (state) {

 case States.Fwd_1 :
 moveFoward(1);
 if (distanceToObstacle() < 2)
 state = TurnR_45;
 break;

 case States.TurnR_45 :
 turnRight(45);
 if (distanceToObstacle() >= 2)
 state = Fwd_1;
 break;

}

Turn
To

Open

Finite State Machines offer another
alternative for combining behaviors

Fwd
Until
Obs

Can also fold closed loop feedback
into the behaviors themselves

Simple finite state machine
to locate red balls

Scan
360

Wander
(20sec)

Fwd
(1ft)

Align
Ball

TurnR

Stop

No Balls

Found
Ball

Lost
Ball Ball

< 1ft

Ball
> 1ft

Does this FSM work?

Simple finite state machine
to locate red balls

Scan
360

Wander
(20sec)

Fwd
(1ft)

Align
Ball

TurnR

Stop

No Balls

Found
Ball

Lost
Ball Ball

< 1ft

Ball
> 1ft

Does this FSM work?

Simple finite state machine
to locate red balls

Scan
360

Wander
(20sec)

Fwd
(1ft)

Align
Ball

TurnR

Stop

No Balls

Found
Ball

Lost
Ball Ball

< 1ft

Ball
> 1ft

Does this FSM work?

Simple finite state machine
to locate red balls

Scan
360

Wander
(20sec)

Fwd
(1ft)

Align
Ball

TurnR

Stop

No Balls

Found
Ball

Lost
Ball Ball

< 1ft

Ball
> 1ft

Does this FSM work?

Simple finite state machine
to locate red balls

Scan
360

Wander
(20sec)

Fwd
(1ft)

Align
Ball

TurnR

Stop

No Balls

Found
Ball

Lost
Ball Ball

< 1ft

Ball
> 1ft

Obstacle < 2ft

To debug a FSM control system
verify behaviors and state transitions

Scan
360

Wander
(20sec)

Fwd
(1ft)

Align
Ball

TurnR

Stop

No Balls

Found
Ball

Lost
Ball Ball

< 1ft

Ball
> 1ft

Obstacle < 2ft

What if robot
has trouble

correctly
approaching

the ball?

To debug a FSM control system
verify behaviors and state transitions

Scan
360

Wander
(20sec)

Fwd
(1ft)

Align
Ball

TurnR

Stop

No Balls

Found
Ball

Lost
Ball Ball

< 1ft

Ball
> 1ft

Obstacle < 2ft

Independently
verify Align

Ball and Fwd
behaviors

Improve FSM control system by replacing
a state with a better implementation

Scan
360

Wander
(20sec)

Fwd
(1ft)

Align
Ball

TurnR

Stop

No Balls

Found
Ball

Lost
Ball Ball

< 1ft

Ball
> 1ft

Obstacle < 2ft

Could replace random
wander with one
which is biased

towards unexplored
regions

Improve FSM control system by replacing
a state with a better implementation

What about integrating camera code into wander
behavior so robot is always looking for red balls?

ball = false
turn both motors on
while (!timeout and !ball)
 capture and process image
 if (red ball) ball = true

 read IR sensor
 if (IR < thresh)
 stop motors
 rotate 90 degrees
 turn both motors on
 endif

endwhile

–  Image processing is
time consuming so
might not check for
obstacles until too late

–  Not checking camera
when rotating

–  Wander behavior
begins to become
monolithic

Obstacle
Sensors
Thread

Image
Compute
Thread

Controller

FSM

Multi-threaded
finite state machine control systems

Drive Motors

Camera
Short IR
+ Bump

Obstacle
Sensors
Thread

Image
Compute
Thread

Controller

FSM

Multi-threaded
finite state machine control systems

Drive Motors

Camera
Short IR
+ Bump

Sensor
Stalk

Thread

Obstacle
Sensors
Thread

Image
Compute
Thread

Controller

FSM

Multi-threaded
finite state machine control systems

Drive Motors

Camera
Short IR
+ Bump

Stalk
Servo

Stalk
Sensors

Mapping
Thread

Sensor
Stalk

Thread

Obstacle
Sensors
Thread

Image
Compute
Thread

Controller

FSM

Multi-threaded
finite state machine control systems

Drive Motors

Camera
Short IR
+ Bump

Stalk
Servo

Stalk
Sensors

FSMs in Maslab

Finite state machines can
combine the model-plan-act and
emergent approaches and are a

good starting point for your
Maslab robotic control system

Outline
• High-level control system paradigms

–  Model-Plan-Act Approach
–  Behavioral Approach
–  Finite State Machine Approach

• Low-level control loops
–  PID controller for motor velocity
–  PID controller for robot drive system

• Examples from past years

Team 15 in 2005 used a map-plan-act
approach (well at least in spirit)

Multiple runs around
a mini-playing field

Odometry data from
exploration round of contest

Team 14 in 2008 used an FSM-like
architecture with reactive behaviors

Team 4 in 2005 used an emergent
approach with four layered behaviors

–  Boredom: If image
doesn’t change then
move randomly

–  ScoreGoals: If image
contains a goal the drive
straight for it

–  ChaseBalls: If image
contains a ball then
drive towards ball

–  Wander: Turn away
from walls or move to
large open areas

Team 12 in 2004 learned the hard way
how hard building a controller can be!

Take Away Points
• You cannot just hack together a robot controller,

you must design a robot controller

• Design simple, module behaviors and then
decide how to compose these behaviors to
achieve the desired task

• Simple finite state machines make a solid
starting point for your Maslab control systems

•  Integrating feedback into your control system
“closes the loop” and is essential for creating
robust robots

