Software and Threading

Geza Kovacs
Maslab 2011

Abstract Design: State Machines

* By using state machine diagrams, you can find flaws
in your behavior without needing to implement it

~
L
«

Capturing
ball

Approaching
ball

Modular Design

* Split independent parts of your application
into modules (packages, classes)

 Each module can be independently
implemented and tested

Sensors Core Logic Actuators

State
Machine

Agree on Specifications Before Coding

class BallPosition {
/** angle of ball relative to the camera,

* in radians. + 1is right, - is left */

double angle;
/** distance in cm, from camera to the ball *,

double distance;

abstract class Vision { // image processing code
/** ball positions from nearest to furthest.

* empty 1f no balls are detected */
BallPosition|[] balllLocations;

/** captures image, detects balls

* and populates ballLocations */
abstract void detectBalls () ;

From State Machines to Java Code

enum State {
EXPLORE , TOBALL , CAPBALL

class RobotSM { // sjate machine

Vision vis; Modularity: Vision, control code separate from state
Actuator act; machine, can be implemented by others

long captureBallStartTime = 0;
/** (@param state Current state of state machine

* @return Next state of state machine */
State nextState (State state) {..}
void runSM() {
State state = State.bEXPLORE;,
while (true) {
vis.detectBalls ();//capture+process image
state = nextState (state);

State nextState (State state) {
i1f (state == State.EXPLORE) {
if (vis.balllocations.length > 0)
state = State.TOBALL;

else
act.rotateleft () ;
} 1f (state == State.TOBALL) {
/] ...
} 1f (state == State.CAPBALL) {
//

J

return state;

Approaching
ball

seen

N
Q)

Exploring

State nextState (State state) {

i1f (state == State.EXPLORE) {
//
} 1f (state == State.TOBALL) {
if (vis.balllocations.length == 0)

state = State.EXPLORE;,
else if (vis.ballLocations[0].distance < 10.0)

captureBallStartTime = System.currentTimel
state = State.CAPBALL;
} else
act.moveForward(vis.ballLocations[0] .angle
} 1f (state == State.CAPBALL) {

//
J

t tate;
return state 0¢

State nextState (State state) {

i1f (state == State.EXPLORE) {
//
} 1f (state == State.TOBALL) {
/] ...
} 1f (state == State.CAPBALL) {

if (System.currentTimeMillis() >
captureBallStartTime + 5000) {
act.stopCaptureBall () ;
state = State.EXPLORE,;
} else
act.captureBall () ;
}

return state;

Capturing
ball -

N
Q)
O
Q)

)
|:I'

=
(D
Q)
—
(D

Exploring

* Alternatively, you can represent states as
objects

interface IState {
IState nextState();
}
class RobotSM2 {
Vision Vvi1s;
Actuator act;
void runSM() {
IState state = new ExploreState(this) ;
while (true) {
vis.detectBalls () ;
state = state.nextState():;

class ExploreState implements IState {
private RobotSM2 sm;

ExploreState (RobotSM2 sm) {
this.sm = sm;

}
public IState nextState() ({

if (sm.vis.balllocations.length > 0)

return new ToBallState (sm) ;
else {

sm.act.rotateleft () ;
return this;

Approaching
ball

Exploring Ballseen

class ToBallState implements IState {
private RobotSM2 sm;
ToBallState (RobotSM2 sm) {
this.sm = sm;
}
public IState nextState() {
if (sm.vis.balllocations.length == 0)
return new ExploreState(sm) ;
else if (sm.vis.balllocations[0] .distance < 10.0) {
return new CapBallState(sm, System.currentTimeM.
} else {
sm.act.moveForward (sm.vis.ballLocations[0] .anglc
return this;

class CapBallState implements IState {
private RobotSM2 sm;
private long captureBallStartTime;
CapBallState (RobotSMZ2 sm, long captureBallStartTime) ({
this.sm = sm;
this.captureBallStartTime = captureBallStartTime;

}
public IState nextState() ({

if (System.currentTimeMillis() >
captureBallStartTime + 5000) {

sm.act.stopCaptureBall () ;

return new ExploreState(sm) ;
} else {

sm.act.captureBall () ;
return this;

Capturing
ball

o0
Q
O
Q
®
I
=
(D
o
Q
—
(D
—
un
wn
(D
O

Exploring

Unit Testing

Ensures your code does what you think it does
— Saves you debugging time later on

Prevents regressions
— Ensures that performance tweaks don’t break your code

JUnit: Unit testing for Java

Denote a method as a test method with the @Test
annotation, use Assert.assertEquals() ,
Assert.assertTrue(), etc, to do tests

Run via Eclipse’s GUI (Run -> Run As -> JUnit Test)
or with java org.junit.runner.JUnitCore
TestClass.class

Writing Unit Tests with JUnit

import org.junit.*;

public clas
@Test
public void testTransitions () ({
RobotSM sm = new RobotSM() ;
sm.vis = new Vision() {
void detectBalls () {}
I
sm.vis.balll.ocations = new BallPosition[] {
new BallPosition (1.0, 0.0),
b s
State expected = State.TOBALL;
State actual = sm.nextState (State.EXPLORE) ;
Assert.assertEquals (expected, actual);

RobotSMTests {
Indicates that this is a test method

Writing Unit Tests with JUnit

import org.junit.*;

public class RobotSMTests ({
@Test
public void testTransitions () {
RobotSM sm = new RobotSM() ; L
Vision code doesn’t need to

SM.V1S N new Vision() { be implemented to test the
void detectBalls() {} state machine!

I
ShtEEs A sm.vis.balllLocations = new BallPosition[] {
detection new BallPosition (1.0, 0.0),

of a ball }

State expected = State.TOBALL;

State actual = sm.nextState (State.EXPLORE) ;
Assert.assertEquals (expected, actual);

Writing Unit Tests with JUnit

import org.junit.*;

public class RobotSMTests ({
@Test
public void testTransitions () {
RobotSM sm = new RobotSM() ;
sm.vis = new Vision() {
void detectBalls () {}
I
sm.vis.balll.ocations = new BallPosition[] {
new BallPosition (1.0, 0.0),
b s
State expected = State.TOBALL;
State actual = sm.nextState (State.EXPLORE) ;
Assert.assertEquals (expected, actual);

Tests that the next state

J is the expected one

Revision Control — svn

Keeps track of the history of changes to your
code, and keeps it backed up it safely on a server

Lets you collaborate with others.

Did something recently stop working? Revert to a
working revision, and see what changed.

Commit often, but don’t commit broken code

Subclipse: graphical svn integration for Eclipse
http://subclipse.tigris.org/

http://subclipse.tigris.org/
http://subclipse.tigris.org/
http://subclipse.tigris.org/

Other Useful Resources

Java API docs:
http://download.oracle.com/javase/6/docs/api/

Maslab API docs:
http://web.mit.edu/maslab/2011/doc/maslab/api/

UORC API docs:
http://web.mit.edu/maslab/2011/doc/uorc/api/

Eclipse: Code editing, JUnit integration, debugger, etc
BotClient: Displaying info from your robot

OrcSpy: Testing your orcboard

SSH: Uploading code to the robot
http://maslab.mit.edu/2011/wiki/Software

http://download.oracle.com/javase/6/docs/api/
http://download.oracle.com/javase/6/docs/api/
http://web.mit.edu/maslab/2011/doc/maslab/api/
http://web.mit.edu/maslab/2011/doc/maslab/api/
http://web.mit.edu/maslab/2011/doc/uorc/api/
http://web.mit.edu/maslab/2011/doc/uorc/api/
http://maslab.mit.edu/2011/wiki/Software

Using Multiple Sensors

* Readings from different sensors may be taken
and processed at different frequencies

— IR: every few ms

— Vision: more CPU intensive, every 150 ms

class RobotSM { // not a good design

Vision vis; IRSensors 1r; Actuator act;

void runSM() {

State state = State.EXPLORE;,

ile (true) {
vis.detectBalls();//capture+process image
ir.detectWalls(); // read IR sensors
state = nextState(state);

IR Readings only
taken evey 150 ms

Problem with Sequential Execution

* Robot cannot capture or react to data from other
sensors (like IR) while long, CPU-intensive tasks
like image processing are running

WEL
appears

Vision Code Runnw Vision Code Running

What we want (Parallel Execution)

Vision Code Runn% Vision Code Runn%

i

What are Threads?

* Can do tasks in parallel
— Does this essentially by having the CPU swap
between tasks (frequently yet unpredictably)

* Threads can access the same region of memory

— If only one thread is writing to that region of memory
(and others are reading from it) -> simple

— If multiple threads need to write to the same region
of memory -> more complex

* To make code run in a separate thread, implement
the Runnable interface, and add a run() method

abstract class Vision implements Runnable ({
BallPosition[] balllocations;
abstract void detectBalls () ;
public void run() {
while (true) {
detectBalls () ;

* Use Thread.yield() to let other threads run (to avoid
one thread hogging all the CPU time)

abstract class Vision implements Runnable ({
BallPosition[] balllocations;
abstract void detectBalls () ;
public void run() {
while (true) {
detectBalls () ;
Thread.yield() ;

e Start threads with new Thread(Runnable).start()

* Program exits when all threads terminate

— Note that, as written, this program never exits because it
never terminates its threads

public class Main ({
public static void main(String[] args) {

RobotSM sm = new RobotSM() ;

sm.vis = new VisionImpl () ;

sm.ir = new IRSensorsImpl () ;

sm.act = new ActuatorImpl();

new Thread(sm) .start () ;

new Thread(sm.vis) .start() ;

new Thread(sm.ir) .start() ;

e Athread terminates when run() returns

* Ensure that threads can be terminated by other threads

 Mark variables written to by other threads as volatile
to ensure compiler doesn’t optimize them out

abstract class Vision implements Runnable ({
BallPosition|[] balllLocations;
abstract void detectBalls () ;

volatile boolean running = true; Mark as volatile

public void run() {
while (running) {
detectBalls () ;
Thread.yield () ;

* Thread can be suspended with Thread.sleep(millis)
* This application runs for 3 minutes then exits

public class Main {
public static void main(String[] args) throws

RobotSM sm = new RobotSM() ;
sm.vis = new VisionImpl () ;
sm.1r = new IRSensorsImpl () ;
sm.act = new ActuatorImpl () ;
new Thread(sm) .start () ;
new Thread(sm.vis) .start() ;
new Thread(sm.ir) .start() ;
Thread.sleep (180000),; // wait 3 minutes
sm.running = false;
sm.vis.running = false;
sm.1r.running = false;

Writes Across Threads

* |[n example so far, many threads read a given
variable, but only a single thread writes to it

 What if many threads write to a single variable?

class Counter {

int value = 0;
void increment() { ++value; }
void decrement() { --value; }

}

class Main { // sequential version
public static void main (String[] args) {

final Counter ¢ = new Counter|() ;

for (int i = 0; i < 1000; ++1i) {
c.lncrement () ;

}

for (int 1i = 0; i < 1000; ++1i) {
c.decrement () ;

}
System.out.println(c.value),; // always 0

}
} e Sequential version: Result after 1000 increments

and 1000 decrements is 0, as expected

class Main { // multi-threaded version, doesn’t (yet) work
public static void main(String[] args) throws Interrupte
final Counter ¢ = new Counter()
Thread a = new Thread(new Runnable () {
public void run() {
for (int 1 = 0; 1 < 1000; ++1i) {

c.increment () ;
Thread.yield() ;

}) s

Thread b = new Thread(new Runnable() {
public void run() {
for (int i = 0; i < 1000; ++i) {
c.decrement () ;
Thread.yield() ; join: waits

} for thread to
} terminate

Y) i
a.start(); b.start(); a.join(); b.join();
System.out.println(c.value),; // not always 0!

Problem with Multi-threaded Counter

* The following sequence of operations might occur:
— Counter’s value is O
— Thread a gets counter value (0)
— Thread b gets counter value (0)
— Thread a writes back incremented value (1)

— Thread b writes back decremented value (-1)

 Final counter value is -1!

Problem with Multi-threaded Counter

* This sequence is also possible (remember, threads
interleave operations in unpredictable order)

— Counter’s value is O

— Thread a gets counter value (0)

— Thread b gets counter value (0)

— Thread b writes back decremented value (-1)

— Thread a writes back incremented value (1)

* Final counter value is 1!

Want: Atomic operations

* We want to get and increment, or get and decrement
the counter without having it be written to by another
thread in the meantime

— Counter’s value is O

— Thread a gets counter value (0) and writes back incremented
value (1)

— Thread b gets counter value (1) and writes back
decremented value (0)

e Or:
— Counter’s valueis 0

— Thread b gets counter value (0) and writes back
decremented value (-1)

— Thread a gets counter value (-1) and writes back
incremented value (0)

* synchronized methods are one way of accomplishing this
this, since only one synchronized method of an instance
can run at once.

class SynchronizedCounter { // thread-safe versio:
int value = 0;
synchronized void increment() {
++value;
}
synchronized void decrement() ({
-—value;

* synchronized blocks are another way, which requires an
object instance to be “locked” as the block of code is
entered. This prevents other code that is synchronized on
that object from executing.

class SynchronizedCounter { // thread-safe versio:
int value = 0;
void increment () {

synchronized (this) { (NI

++value;

} Counter instance unlocked

J

void decrement () {

synchronized (this) { Counter instance locked

-—-value;

} Counter instance unlocked

Thread-safe objects

 The SynchronizedCounter example is thread-safe.
That is, multiple threads can call its methods and
they will still behave as expected

— Immutable objects like String are inherently thread-safe

— Some mutable objects, like BlockingQueue, have been
made thread-safe

* Others, like ArraylList, are not thread-safe

* |f modifying an object from multiple threads, read
its specifications to see whether it’s thread-safe

— If not, add synchronized statements in your own code

class Main { // multi-threaded version, works
Dlic static void main(String[] args) throws Interrupte
mwTemL inal Counter c = new Counter() ;
— Thread a = new Thread(new Runnable () {
public void run() {

for (int i = 0; i1 < 1000; ++i) {
synchronized (c) {c.increment();}

Thread.yield() ,;
}

}) s

Thread b = new Thread(new Runnable () {
public void run() {

or (int i = 0; i < 1000; ++i) {
External synchronization synchronized (c) {c.decrement() ;}

Thread.yield () ;
}

b) s
a.start(); b.start(); a.join(); b.join();
System.out.println(c.value) ;

Final Notes on Threading

* Do:
— Avoid writing to objects from multiple threads if
possible

— Make the objects thread-safe, or synchronize externally,
if you must

 Don’t
— Synchronize everything (makes your code execute
sequentially, and might even lead to deadlocks)

* For further info, see Java’s Concurrency Tutorial:
http://download.oracle.com/javase/tutorial/essential/
concurrency/

http://download.oracle.com/javase/tutorial/essential/concurrency/
http://download.oracle.com/javase/tutorial/essential/concurrency/
http://download.oracle.com/javase/tutorial/essential/concurrency/

