Vision

Geza Kovacs
Maslab 2011

Colorspaces

* RGB: red, green, and blue components
 HSV: hue, saturation, and value

* Your color-detection code will be more
resilient to lighting conditions if you use
HSV

RGB: 212, 45, 45 RGB: 102, 0,0 RGB: 255, 105,105

HSV: 0, 201, 212 HSV: 0, 255, 102 HSV: 0, 105, 255

Colorspaces

= hue= > hue=

-
» Note that because the hue in HSV \
wraps around, red is both h=255

and h=0
e See Tutorial for more info on HSV

Representation of Color in Bytes

Bufferedlmage img = ...;
img.getRGB(x, y) returns a 32-bit (4-byte) integer

OxO0FFOO0O00

Representation of Color in Bytes

Alpha channel: basically transparency,

not of interest

Ox00FFO0O0O0

Representation of Color in Bytes

OxOO0FFO00O0

Red: OxFF=255

Representation of Color in Bytes

Green

OxOO0FFO000

Red: OxFF=255 Green: 0x00=0

Representation of Color in Bytes

Blue

OxO0FFO000

Red: OxFF=255 Green: 0x00=0 Blue: 0x00=0

Representation of Color in Bytes
OxOO0FFO0O00 OxO000FFOO

R: OxFF=255 R: 0x00=0

G: 0x00=0
B: 0x00=0

OxO00000FF OxO0C20E9F

R: 0xC2=194
G: OxOE=14

G: OxFF=255
B: 0x00=0

R: 0x00=0
G: 0x00=0

B: OxFF=255 B: Ox9F=159

Extracting out R, G, B components

Bufferedlmage img = ...;

int rgb = img.getRGB(x,y);

int r = (rgb & 0xOOFFO000) >> 16;
int g = (rgb & 0xO000FFO00) >> 8;
int b = (rgb & 0xO00000FF);

rgb=b + (g << 8) + (r << 16)

* Also works if the image is in HSV format; just
replace r with h, g with s, and b with v

e See Vision tutorial for more info

.' 7 },‘-.-‘,‘

-&0 adt
‘\\\ \\‘ \\‘\“):5‘

'1“‘1\\\ »‘M

By using color thresholds,
(checking that hue isin a
certain range), can classify
pixels as being Red, Yellow,
or other

Connected
Component Labeling

* As a first step in detecting
balls and goals, we want to
group connected yellow
pixels, and connected red
pixels into “blobs of
interest”

— That is, label each pixel with
a number indicating the

connected component it
belongs to

Connected Component Labeling
* Various efficient n I-I
algorithms exist
for finding n !
connected
components of
white pixels in
binary images

* We can use
these
algorithms if we
consider colors
one at a time

2-pass algorithm for Connected
Component Labeling on Binary Images

Pass 1:
* If all 4 neighbors are black or unlabeled,

assign a new label to current point
* If only one neighbor is white, assign its
abel to current point

* If more than one of the neighbors are
white, assign one of their labels to current
point, and note equivalence of their labels

Pass 2:

* Merge labels which were marked as
equivalent in the first pass

pd

Pass 1:

* Ifall 4 neighbors are black or unlabeled, assign a new label to
current point

* If only one neighbor is white, assign its label to current point

* If more than one of the neighbors are white, assign one of their
labels to current point, and note equivalence of their labels

Current point is No labeled white No labeled white No labeled white
not white -> neighbors -> neighbors -> neighbors ->
Do nothing Create label 1 Create label 2 Create label 4

Pass 1:

* Ifall 4 neighbors are black or unlabeled, assign a new label to
current point

* If only one neighbor is white, assign its label to current point

* If more than one of the neighbors are white, assign one of their
labels to current point, and note equivalence of their labels

2 white labeled 1 white neighbor 2 white labeled 1 white neighbor
neighbors: 1, 4 -> with label 1 -> neighbors: 1, 2 -> with label 1 ->
Mark 1=4, assign 1 Assign 1 Mark 1=2, assign 1 Assign 1

* At the end of the first
pass, we have marked
labels 1, 2, and 4 as
equivalent, and have
marked labels 3 and 5
as equivalent

* |In the second pass, we

replace all 2s and 4s %
with 1s, and replace all
5s with 3s

Colors aren’t always enough for segmenting objects
\\‘ y ‘

1
A\ R o
AR AR

R NS
P LR AL U
PPN T | i _ |‘y-‘-‘-\-'.'-\\\~'ﬁ.

* Note that at edges of
objects, there is a change in
pixel value

e Use edge detection for
segmenting objects

Image Convolution

 Determines pixel value based on neighboring values
(relation described by a kernel matrix)

 Used in blurring, sharpening, edge detection, etc

Kernel 0 1/6 0 Source Image
1/6 1/3 1/6 (single-chanel,
0 1/6 0 greyscale)

Result of 1/3+4/6+7/6+

convolution 3/6 +5/6 =21/6

5/3+1/6+0/6 +
10/6 + 15/6 = 36/6

11 4 13 3
7 1 3 9
0 5 10 6
2 15 12 14

3/3+13/6+1/6+
9/6 + 10/6 =39/6

10/3 +3/6 +5/6 +
6/6 + 12/6 = 46/6

e Various workarounds for determining the edge pixels

import java.awt.image.*;
BufferedImage simpleBlur (BufferedImage src) {
float[] matrix = new float[] {
0.0f, 1.0f/6, 0.0f,
1.0£/6, 1.0£/3, 1.0f/6,
0.0f, 1.0f/6, 0.0f,
I
Kernel kernel = new Kernel (3, 3, matrix);
return new ConvolveOp (kernel) .filter (src, null);

0 1/6 O

Source

Kernel 1/6 1/3 1/6 Image
0 1/6 O

Result of
convolution
(slightly blurred
image)

import java.awt.image.*;
BufferedImage simpleBlur (BufferedImage src) {
float[] matrix = new float[] {
0.0f, 1.0f/6, 0.0f,
1.0£/6, 1.0£/3, 1.0f/6,
0.0f, 1.0f/6, 0.0f,
I
Kernel kernel = new Kernel (3, 3, matrix);
return new ConvolveOp (kernel) .filter (src, null);

0 1/6 O

Source

Kernel 1/6 1/3 1/6 Image
0 1/6 O

Result of
convolution
applied 20 times
(more blurred
image)

Gaussian Blur

A common preprocessing step before various operations
(edge detection, color classification before doing connected

component labeling, etc)
N

2/159 4/159 5/159 4/159 2/159

Kernel 4/159 9/159 12/159 9/159 4/159 Source
5/159 12/159 15/159 12/159 5/159 Image
4/159 9/159 12/159 9/159 4/159
2/159 4/159 5/159 4/159 2/159

Result of
convolution
with gaussian
kernel

Detecting Horizontal Edges

* Use the Sobel operator G_x

-1 -2 1
Kernel 0 0 0
Source
1 2 1 Image

Result of
convolution with
sobel operator
G_x

Detecting Vertical Edges

e Use the Sobel operator G vy

-1 -2 1
Kernel 0 0 0
Source
1 2 1 Image

Result of
convolution with =
sobel operator
G_y

Edge Detection

* Get matrices representing
horizontal edges (G_x) and
vertical edges (G_y) (via
convolution with sobel
operator)

* Then, assign each pixel
squareroot(value in the
horizontal edge squared +
value in vertical edge
squared)

e Use more elaborate
preprocessing and
postprocessing to get nicer
results

Segmenting Objects

* Group same-colored regions
using connected component
labeling, and use edges to
segment objects further?

— Fit lines or curves to edges?

Classifying Objects as Goals or Balls

* Consider the shape: rounded boundary, vs
straight boundary

* Consider the region around the center:
red/yellow or not?

* Consider special cases: goals with balls in the
middle, goals observed at an angle, etc

Estimating Distances to Objects

* Note that all balls have the

same size. Likewise with |
] Observed Distance ~=
goals, wall heights, etc k/(width in pixels)

By making some
measurements and using
some trig, you can estimate
distance to objects from your
image data

Actual Distance

Testing Advice

e Keep a collection of images which you can use
unit tests on

* Test detection of balls and goals from different
angles, and arrange in various ways

 Make sure to test your vision code (especially
color detection) in different lighting conditions

Other Resources

 Connected Component Labeling:
http://homepages.inf.ed.ac.uk/rbf/HIPR2/label.htm

* Edge Detection:
http://www.pages.drexel.edu/~weg22/can tut.html

e Various lectures from previous years also have info on
camera details, performance optimizations, stereo
vision, rigid body motion, etc

http://web.mit.edu/6.186/2010/lectures/vision.pdf

http://web.mit.edu/6.186/2007/lectures/vision/maslab-vision.ppt
http://web.mit.edu/6.186/2006/lectures/Vision.pdf
http://web.mit.edu/6.186/2005/doc/basicvision.pdf

http://web.mit.edu/6.186/2005/doc/morevision.pdf
http://courses.csail.mit.edu/6.141/spring2008/pub/lectures/Vision-l-Lecture.pdf

http://homepages.inf.ed.ac.uk/rbf/HIPR2/label.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/label.htm
http://www.pages.drexel.edu/~weg22/can_tut.html
http://www.pages.drexel.edu/~weg22/can_tut.html
http://web.mit.edu/6.186/2007/lectures/vision/maslab-vision.ppt
http://web.mit.edu/6.186/2007/lectures/vision/maslab-vision.ppt
http://web.mit.edu/6.186/2007/lectures/vision/maslab-vision.ppt
http://web.mit.edu/6.186/2007/lectures/vision/maslab-vision.ppt
http://web.mit.edu/6.186/2007/lectures/vision/maslab-vision.ppt
http://web.mit.edu/6.186/2007/lectures/vision/maslab-vision.ppt
http://web.mit.edu/6.186/2006/lectures/Vision.pdf
http://web.mit.edu/6.186/2006/lectures/Vision.pdf
http://web.mit.edu/6.186/2005/doc/basicvision.pdf
http://web.mit.edu/6.186/2005/doc/basicvision.pdf
http://web.mit.edu/6.186/2005/doc/morevision.pdf
http://web.mit.edu/6.186/2005/doc/morevision.pdf
http://courses.csail.mit.edu/6.141/spring2008/pub/lectures/Vision-I-Lecture.pdf
http://courses.csail.mit.edu/6.141/spring2008/pub/lectures/Vision-I-Lecture.pdf
http://courses.csail.mit.edu/6.141/spring2008/pub/lectures/Vision-I-Lecture.pdf
http://courses.csail.mit.edu/6.141/spring2008/pub/lectures/Vision-I-Lecture.pdf
http://courses.csail.mit.edu/6.141/spring2008/pub/lectures/Vision-I-Lecture.pdf
http://courses.csail.mit.edu/6.141/spring2008/pub/lectures/Vision-I-Lecture.pdf

