
Vision

Geza Kovacs

Maslab 2011

Colorspaces

• RGB: red, green, and blue components

• HSV: hue, saturation, and value

• Your color-detection code will be more
resilient to lighting conditions if you use
HSV

RGB: 212, 45, 45
HSV: 0, 201, 212

RGB: 102, 22, 22
HSV: 0, 201, 102

RGB: 102, 0, 0
HSV: 0, 255, 102

RGB: 212, 45, 45
HSV: 0, 201, 212

RGB: 102, 0,0
HSV: 0, 255, 102

RGB: 255, 105,105
HSV: 0, 105, 255

Colorspaces

• Note that because the hue in HSV
wraps around, red is both h=255
and h=0

• See Tutorial for more info on HSV

hue=255 hue=0

Representation of Color in Bytes

BufferedImage img = …;

img.getRGB(x, y) returns a 32-bit (4-byte) integer

0x00FF0000

Representation of Color in Bytes

0x00FF0000

Alpha channel: basically transparency,
not of interest

Representation of Color in Bytes

0x00FF0000

Red

Red: 0xFF=255

Representation of Color in Bytes

0x00FF0000

Green

Red: 0xFF=255 Green: 0x00=0

Representation of Color in Bytes

0x00FF0000

Blue

Red: 0xFF=255 Green: 0x00=0 Blue: 0x00=0

Representation of Color in Bytes

0x00FF0000
R: 0xFF=255
G: 0x00=0
B: 0x00=0

R: 0x00=0
G: 0xFF=255

B: 0x00=0

0x0000FF00

0x000000FF
R: 0x00=0
G: 0x00=0

B: 0xFF=255

0x00C20E9F
R: 0xC2=194
G: 0x0E=14
B: 0x9F=159

Extracting out R, G, B components

BufferedImage img = …;

int rgb = img.getRGB(x,y);

int r = (rgb & 0x00FF0000) >> 16;

int g = (rgb & 0x0000FF00) >> 8;

int b = (rgb & 0x000000FF);

rgb = b + (g << 8) + (r << 16)

• Also works if the image is in HSV format; just
replace r with h, g with s, and b with v

• See Vision tutorial for more info

• By using color thresholds,
(checking that hue is in a
certain range), can classify
pixels as being Red, Yellow,
or other

• As a first step in detecting
balls and goals, we want to
group connected yellow
pixels, and connected red
pixels into “blobs of
interest”

– That is, label each pixel with
a number indicating the
connected component it
belongs to

3

2

4

Connected
Component Labeling

1

• Various efficient
algorithms exist
for finding
connected
components of
white pixels in
binary images

• We can use
these
algorithms if we
consider colors
one at a time

Connected Component Labeling
1

2

1 2

1

2

3 4

2-pass algorithm for Connected
Component Labeling on Binary Images

Pass 1:

• If all 4 neighbors are black or unlabeled,
assign a new label to current point

• If only one neighbor is white, assign its
label to current point

• If more than one of the neighbors are
white, assign one of their labels to current
point, and note equivalence of their labels

Pass 2:

• Merge labels which were marked as
equivalent in the first pass

Pass 1:

• If all 4 neighbors are black or unlabeled, assign a new label to
current point

• If only one neighbor is white, assign its label to current point

• If more than one of the neighbors are white, assign one of their
labels to current point, and note equivalence of their labels

No labeled white
neighbors ->

Create label 1

No labeled white
neighbors ->

Create label 2

No labeled white
neighbors ->

Create label 4

Current point is
not white ->
Do nothing

Pass 1:

• If all 4 neighbors are black or unlabeled, assign a new label to
current point

• If only one neighbor is white, assign its label to current point

• If more than one of the neighbors are white, assign one of their
labels to current point, and note equivalence of their labels

1 white neighbor
with label 1 ->

Assign 1

2 white labeled
neighbors: 1, 2 ->

Mark 1=2, assign 1

1 white neighbor
with label 1 ->

Assign 1

2 white labeled
neighbors: 1, 4 ->

Mark 1=4, assign 1

• At the end of the first
pass, we have marked
labels 1, 2, and 4 as
equivalent, and have
marked labels 3 and 5
as equivalent

• In the second pass, we
replace all 2s and 4s
with 1s, and replace all
5s with 3s

Colors aren’t always enough for segmenting objects

• Note that at edges of
objects, there is a change in
pixel value

• Use edge detection for
segmenting objects

Image Convolution
• Determines pixel value based on neighboring values

(relation described by a kernel matrix)
• Used in blurring, sharpening, edge detection, etc

0 1/6 0

1/6 1/3 1/6

0 1/6 0

Kernel
11 4 13 8

7 1 3 9

0 5 10 6

2 15 12 14

Source Image
(single-chanel,
greyscale)

Result of
convolution

1/3 + 4/6 + 7/6 +
3/6 + 5/6 = 21/6

3/3 + 13/6 + 1/6 +
9/6 + 10/6 = 39/6

5/3 + 1/6 + 0/6 +
10/6 + 15/6 = 36/6

10/3 + 3/6 + 5/6 +
6/6 + 12/6 = 46/6

• Various workarounds for determining the edge pixels

0 1/6 0

1/6 1/3 1/6

0 1/6 0

Kernel

Result of
convolution
(slightly blurred
image)

import java.awt.image.*;

BufferedImage simpleBlur(BufferedImage src) {

 float[] matrix = new float[] {

 0.0f, 1.0f/6, 0.0f,

 1.0f/6, 1.0f/3, 1.0f/6,

 0.0f, 1.0f/6, 0.0f,

 };

 Kernel kernel = new Kernel(3, 3, matrix);

 return new ConvolveOp(kernel).filter(src, null);

}

Source
Image

0 1/6 0

1/6 1/3 1/6

0 1/6 0

Kernel

Result of
convolution
applied 20 times
(more blurred
image)

import java.awt.image.*;

BufferedImage simpleBlur(BufferedImage src) {

 float[] matrix = new float[] {

 0.0f, 1.0f/6, 0.0f,

 1.0f/6, 1.0f/3, 1.0f/6,

 0.0f, 1.0f/6, 0.0f,

 };

 Kernel kernel = new Kernel(3, 3, matrix);

 return new ConvolveOp(kernel).filter(src, null);

}

Source
Image

Gaussian Blur
• A common preprocessing step before various operations

(edge detection, color classification before doing connected
component labeling, etc)

2/159 4/159 5/159 4/159 2/159

4/159 9/159 12/159 9/159 4/159

5/159 12/159 15/159 12/159 5/159

4/159 9/159 12/159 9/159 4/159

2/159 4/159 5/159 4/159 2/159

Kernel Source
Image

Result of
convolution
with gaussian
kernel

Detecting Horizontal Edges

• Use the Sobel operator G_x

 -1 -2 -1

0 0 0

1 2 1

Kernel
Source
Image

Result of
convolution with
sobel operator
G_x

Detecting Vertical Edges

• Use the Sobel operator G_y

 -1 -2 -1

0 0 0

1 2 1

Kernel
Source
Image

Result of
convolution with
sobel operator
G_y

Edge Detection

• Get matrices representing
horizontal edges (G_x) and
vertical edges (G_y) (via
convolution with sobel
operator)

• Then, assign each pixel
squareroot(value in the
horizontal edge squared +
value in vertical edge
squared)

• Use more elaborate
preprocessing and
postprocessing to get nicer
results

Segmenting Objects

• Group same-colored regions
using connected component
labeling, and use edges to
segment objects further?

– Fit lines or curves to edges?

1 2

3

Classifying Objects as Goals or Balls

• Consider the shape: rounded boundary, vs
straight boundary

• Consider the region around the center:
red/yellow or not?

• Consider special cases: goals with balls in the
middle, goals observed at an angle, etc

Estimating Distances to Objects

• Note that all balls have the
same size. Likewise with
goals, wall heights, etc

• By making some
measurements and using
some trig, you can estimate
distance to objects from your
image data

Observed Distance ~=
k/(width in pixels)

Actual Distance
Ball

Cam

Testing Advice

• Keep a collection of images which you can use
unit tests on

• Test detection of balls and goals from different
angles, and arrange in various ways

• Make sure to test your vision code (especially
color detection) in different lighting conditions

• Connected Component Labeling:
http://homepages.inf.ed.ac.uk/rbf/HIPR2/label.htm

• Edge Detection:
http://www.pages.drexel.edu/~weg22/can_tut.html

• Various lectures from previous years also have info on
camera details, performance optimizations, stereo
vision, rigid body motion, etc

http://web.mit.edu/6.186/2010/lectures/vision.pdf
http://web.mit.edu/6.186/2007/lectures/vision/maslab-vision.ppt
http://web.mit.edu/6.186/2006/lectures/Vision.pdf
http://web.mit.edu/6.186/2005/doc/basicvision.pdf
http://web.mit.edu/6.186/2005/doc/morevision.pdf
http://courses.csail.mit.edu/6.141/spring2008/pub/lectures/Vision-I-Lecture.pdf

Other Resources

http://homepages.inf.ed.ac.uk/rbf/HIPR2/label.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/label.htm
http://www.pages.drexel.edu/~weg22/can_tut.html
http://www.pages.drexel.edu/~weg22/can_tut.html
http://web.mit.edu/6.186/2007/lectures/vision/maslab-vision.ppt
http://web.mit.edu/6.186/2007/lectures/vision/maslab-vision.ppt
http://web.mit.edu/6.186/2007/lectures/vision/maslab-vision.ppt
http://web.mit.edu/6.186/2007/lectures/vision/maslab-vision.ppt
http://web.mit.edu/6.186/2007/lectures/vision/maslab-vision.ppt
http://web.mit.edu/6.186/2007/lectures/vision/maslab-vision.ppt
http://web.mit.edu/6.186/2006/lectures/Vision.pdf
http://web.mit.edu/6.186/2006/lectures/Vision.pdf
http://web.mit.edu/6.186/2005/doc/basicvision.pdf
http://web.mit.edu/6.186/2005/doc/basicvision.pdf
http://web.mit.edu/6.186/2005/doc/morevision.pdf
http://web.mit.edu/6.186/2005/doc/morevision.pdf
http://courses.csail.mit.edu/6.141/spring2008/pub/lectures/Vision-I-Lecture.pdf
http://courses.csail.mit.edu/6.141/spring2008/pub/lectures/Vision-I-Lecture.pdf
http://courses.csail.mit.edu/6.141/spring2008/pub/lectures/Vision-I-Lecture.pdf
http://courses.csail.mit.edu/6.141/spring2008/pub/lectures/Vision-I-Lecture.pdf
http://courses.csail.mit.edu/6.141/spring2008/pub/lectures/Vision-I-Lecture.pdf
http://courses.csail.mit.edu/6.141/spring2008/pub/lectures/Vision-I-Lecture.pdf

