
6.186 Mobile Autonomous Systems Laboratory

Java Image Processing Tutorial

David Nelson and the Maslab Staff

January 8, 2009

1 Introduction

The purpose of this tutorial is to help you become acquainted with some of the basic computer vision
techniques used in Maslab and with image processing in Java. Once IAP starts, you will have less than a
month to build and debug your robot. The goal of this tutorial is to enable you to hit the ground running.
There are two tasks that we would like you to complete before IAP: blue line filtering and red ball finding.
These are two tasks that your robot will likely need to perform regardless of the details of the contest. If
you are unfamiliar with Java, we strongly suggest that you look at Sun’s Java Tutorial,1 and that you check
out the O’Reilly books on Java.2

2 Image Processing in Maslab

The specifics of the playing field changes from year to year, but the basic premise remains the same: robots
collect red balls and place them into (or near) yellow goals. Detecting and locating objects from images is a
difficult computer vision problem. Fortunately, we have simplified the task by color-coding, so that you will
be able to manageably complete it during IAP. Last year’s playing field was color-coded as follows:

Color Objects
Red Balls
Yellow Goals
Green and Black Barcodes
Blue Top edge of walls
Light Blue Floor
White Walls

3 The HSV Color Space

The PNG images we will use—and the images returned from your camera—are stored in the RGB (red,
green, blue) color space. You will likely find it easier to process the images in the HSV (hue, saturation,
value) color space, because it decouples hue from the other variables. In RGB, it’s difficult to concisely
describe all the shades of, say, yellow.

Colors within the HSV color space are determined by three numbers: hue, saturation, and value. Hue is
the pigment of the color. For instance, red, green, yellow, and blue are hues, whereas light blue and dark
blue have similar hues. Saturation is how much pigment there is in a color; when saturation is zero, the color
is a shade of gray. You can think of saturation as the amount of food coloring added to water when making
colored water. If the saturation is zero, the hue doesn’t have any effect on the color. Finally, there is value,
sometimes referred to as brightness or luminance. If the value is zero, the color is black, regardless of hue

1http://java.sun.com/docs/books/tutorial/
2http://libraries.mit.edu/get/safari and search for Java

1

http://java.sun.com/docs/books/tutorial/
http://libraries.mit.edu/get/safari


or saturation. These extremes lead to an annoyance in the HSV system: black and white interfere with just
labelling with hue. That is, black, white, and shades of grey can have any hue.

In the computer, hue, saturation, and value are each represented by a byte and can range from 0 to 255.
Playing with the color picker in your favorite image editing program (Gimp, Photoshop, Windows Paint,
etc.) will allow you to get a feel for the HSV representations of common colors. Vivid shades of red, yellow,
green and blue all have saturations of 255, and hues of approximately 0/255, 43, 85, 170, respectively. You
will notice another annoyance in the HSV color space, namely that red is both 0 and 255. This is because
hue is circular, and wraps around at red. If you want to know more about HSV, or about the various color
spaces in general, use Google.

4 Example: Finding Red Blobs

4.1 Overview

In order to help you learn to manipulate images in Java, we will walk you through the process of loading
an image from disk, processing the image, and then writing it back to disk. There are many possible image
formats, and we have chosen PNG because it is lossless. A lossy format like JPEG can introduce artifacts
that you might not notice, but that your code probably will. You may either download test images from the
Maslab website or make your own using Gimp or Photoshop. Remember that you should assess the quality
of your algorithms using real images, not toy examples. For the Athena-phobic, to use the Gimp, type:

athena% add graphics
athena% gimp &

Maslab is all about learning by doing. In this spirit, although we have provided you with a program
that does an image processing task, you will quickly notice that it needs some work before you can use it on
your robot. We hope that this program will serve as a base from which to complete functions for blue line
filtering and red ball finding.

In our demonstration program, we will use the following image:

2



This image, capture3.png, is a sample from a playing field. We will use it to see how to read data from
disk, search it for red blobs, draw on it, and write the modified image back to disk. In particular, we will
scan for red pixels, compute some statistics about them (area, center of mass, bounding box, aspect ratio),
draw the bounding box, draw an X at the center of mass, and color in all the pixels we thought were red.

4.2 Run the code

From Athena, first setup a workspace for yourself:

athena% mkdir 6.186; cd 6.186
athena% mkdir tutorial; cd tutorial

Next, we need to mount the necessary Athena lockers and set our $CLASSPATH:

athena% add java
athena% add 6.186
athena% setenv CLASSPATH .:/mit/6.186/2011/maslab.jar

If you like, you can add those lines to your .environment file, so they will be run when you log in.
We now have the necessary tools to get started. Fetch the source and image from the 6.186 locker:

athena% cp /mit/6.186/2011/tutorials/imagetutorial/capture3.png .
athena% cp /mit/6.186/2011/tutorials/imagetutorial/ImageTutorial.java .

Compile the and run the program:

athena% javac -g *.java
athena% java ImageTutorial

Congratulations. The program should have dumped some useful information to the terminal and produced
a new image, capture3result.png. Have a look at it:

athena% add graphics
athena% xv capture3result.png &

3



Why are the colors so weird? Well, we converted the image to the HSV color space, storing the hue in
the red channel, the saturation in the green channel, and the value in the blue channel. That’s why the walls
look blue—very large value, whereas (what you can see of) the ball looks red—very large hue.

Check out the X. Not bad. Not bad at all.

4.3 The Code

Lets take a look at the code to see what’s happening. Open ImageTutorial.java in your favorite text editor
(or just look at the code listing at the end of the tutorial). I’m going to use Emacs because I like the syntax
highlighting:

athena% emacs ImageTutorial.java &

We’ve tried to adhere to good coding practices in this tutorial, but we occasionally throw them to the wind
for brevity. The comments in the code go into detail about the actual implementation, whereas this tutorial
will discuss the take-home message. Although the code in the file is laid out as a bottom-up implementation,
we’re going to discuss the top-down design. So, let’s start at the end, with the main() function.

The main function performs five basic operations:

1. Read the image from disk (with error checking).

2. Scan the image and compute statistics.

3. Draw on the image.

4. Print out the results.

5. Write the image back to disk (with error checking).

The purpose of each of these should be fairly clear. Now for the details. . .

4.3.1 Read an image from disk

The constructor, ImageTutorial(String filename), takes the filename of an image to load. Loading an
image is easy because, like most things in Java, there’s a library to do it for you. In this case, the relevant
library is javax.imageio.ImageIO. It requires a java.io.File object, and figures out the file format on its

4



own, returning a java.awt.BufferedImage. Although Java supports a number of different implementations
of the Image class, we will use BufferedImages exclusively, because they guarantee that all of the image
data is loaded and available. Other implementations support lazy loading and other features which will only
cause headaches.

The constructor creates the appropriate File object, hands it off to ImageIO, and the rest is history. If
something goes wrong, like the file doesn’t exist, or ImageIO can’t figure out the format, the constructor
just passes the resulting IOException back to main, which fails gracefully. Finally, the constructor calls the
handy function maslab.camera.Camera.rgbToHsv() which does the right thing, returning an image where
hue is in the red channel, saturation is in the green channel, and value is in the blue channel.

4.3.2 Scan the image and compute statistics

The heart of this process is the function find_red_blob(). It makes a linear scan through the image,
checking to see whether a pixel is red. If it finds one, it updates the statistics. The area (also called
the zeroth moment) is simply the number of red pixels, N =

∑
x

∑
y B(x, y). The center-of-mass (also

called the first moment, and taken to be the position of the ball), is a weighted sum of the red pixels. Let
B(x, y) = 1 if the pixel (x, y) is red, 0 otherwise. Then the x-component of the first moment is given by
positionx = 1

N

∑
x

∑
y x · B(x, y), and similarly for the y-component. Because B(x, y) is either zero or one,

we simply add in x or y whenever (x, y) is red. Finally, we keep track of the minimum and maximum x and
y values seen.

To determine if a pixel is red, we use the isRed(int hsv) function. It first unpacks the hue, saturation,
and value out of the integer returned by getRGB() using some bit twiddling. getRGB() is supposed to return
the RGB value of a pixel in packed integer format, that is, with blue in the low byte, green in the next byte,
red in the next byte, and zero in the high byte. However, we’ve replaced those with HSV values. Convince
yourself that the ANDs and shifts do the right thing. In particular, notice the care taken to perform the shift
first, and the mask second. All numeric types in Java are signed, so a left-shift actually fills the high-order
bits with copies of the sign bit. This is a subtle point, but it can cause your code to do things you didn’t
expect. Google for “bit mask” if you’re still lost. Finally, we check to see if the HSV values fall in the
appropriate ranges for a red ball. We could get away with just testing the hue, but try removing the tests on
saturation and value and see what happens. Also note that, because the hue wraps around, and because we
happen to be measuring a range that includes the “end points,” we must be careful about how we formulate
the test. See the source comments for an alternative approach.

Where did we get those thresholds? There are a number of ways to find them. Trial and error is a
popular one. Looking at values in your favorite image editor is another. These particular numbers came
from MATLAB and some trial and error. If you wanted to be fancier, you could compute the mean and
variance of the hue of the pixels in the red ball, or you could try to learn the thresholds on the fly by using
some sort of clustering algorithm in the color-space. The point is, you should play around with different
values to see how much complexity you think you need. More complex schemes can make your algorithms
more robust, but take time to compute, time to implement, and provide more opportunity to make a mistake.

4.3.3 Draw on the image

All the drawing takes place in the renderStatistics() function. The first step is to create a Graphics2D
object associated with our BufferedImage. Next, we set the color. Then we draw. Because the drawing has
been separated from the searching, we need to do another complete scan of the image to color in the red
pixels. We did this partly to split out different operations into different functions, and partly because, in a
real system, you wouldn’t want to draw on every image you process. If the second pass through the image
really bugs you, you’re welcome to embed the drawing code in the initial pass.

For each red pixel in the image, we draw a line from the pixel to itself. There is no particular function
to draw just one pixel, and this works fine. To draw the bounding box and the X, we make use of the
drawLine() and drawRect() functions. Note that drawRect() takes the x and y-coordinates of the upper
left corner, followed by the width and height of the rectangle. There are many other drawing functions.
For a list, see the Java J2SE API reference for Graphics and Graphics2D.3 That’s all there is to it. The

3http://java.sun.com/docs/. Make friends with it.

5

http://java.sun.com/docs/


Graphics2D operations alter the underlying BufferedImage.

4.3.4 Print out the results

This is just some pretty formatting. We also include the aspect ratio, width
height , in the output. A correctly

detected ball should have an aspect ratio close to 1, whereas a partially detected ball, or multiple balls, will
likely have aspect ratios greater or less than 1. We use a function to convert to a string rather than call
System.out.println() directly because you don’t usually have access to standard output on your robot.
You will want to use another logging mechanism, such as Maslab’s BotClient (you’ll hear more about it
later).

4.3.5 Write the image back to disk

This is basically the same as reading, except that we pass a string indicating the output format. In this case
it’s PNG. Again, we pass any errors back to main, which fails gracefully.

4.4 Discussion

As you may have noticed by looking at the algorithm, there are two obvious failure modes of this system:
multiple balls, and changing lighting conditions. The problem of multiple balls is serious. You will definitely
be faced with multiple balls, and you will need to find a way to distinguish among them. The problem
of lighting is less of a problem, because for weak enough thresholds, the algorithm will still detect balls.
However, it may also detect spurious balls, and it might detect only pieces of balls, which will not give
you the quality of information you might like. The thresholds in this example were tuned by hand for this
particular image. You’ll find that they don’t work as well all the time.

5 Exercise: Blue Line Filtering

5.1 Motivation

The walls of the Maslab playing field are (mostly) white with a blue border along the top. The colors above
the border are determined by the conditions surrounding the playing field and could be anything. In order
to avoid attacking an audience member with a red sweater, your robot will likely need to do “blue line
filtering.” Blue line filtering attempts to locate the tops of the walls and discards all information above them
(by, for example, drawing black in that area).

5.2 A possible solution

The following simple algorithm (in pseudo-code) should get you started in the right direction.

for each row, starting from the bottom // (why the bottom?)
for each pixel in the current row
if the current pixel is blue (but not light blue!)
discard information above this pixel

end if
end for

end for

5.3 Discussion

The above algorithm works pretty well in the average, well-behaved case. However, you should be able to
imagine some important cases when it would fail. Suppose there is a gap in the blue line, even a few pixels
wide. Suppose, in addition to the gap, there is a jump discontinuity in the blue line, such as a near corner
occluding a far wall. Suppose that some other object (like a tower, in 2004) occludes the blue line. Suppose
your robot can see a blue line through a yellow goal.

6



Your job is to go about dealing with these cases. There are a number of possibilities, including interpo-
lation, Hough transforms, a stateful detector, and topological considerations, to name a few.

6 Exercise: Red Ball Finding

6.1 Motivation

The overall goal of your robot will involve finding and reasoning about the locations of colored things. It
is therefore important to be able to find red balls. As you saw in the example, this is far from easy. Just
searching for red is hard enough. What is red, exactly? Even once you know what red is, how can you tell
how many red things you’re seeing? Balls are particularly obnoxious. They reflect light; they cast shadows;
they have wildly non-uniform brightness. (On the other hand, they look conveniently the same from all
directions.) How does one deal with this? Among any five Maslab staff members, you would probably find
five different approaches. Clearly you’ll need to consider both color and geometry, and you’ll probably end
up effectively doing some sort of connected components analysis. (That is, you’ll assign each red pixel to
a particular red ball or to noise). Keep in mind what you really want out of this, though: a list of ball
locations (and perhaps sizes).

6.2 World coordinates from image coordinates

Another part of finding red balls is determining where they are in the world based on where they are in
the image. Imagine holding a piece of glass out in front of you and looking at a red ball. If you traced the
ball with a marker, that would correspond to the image your robot receives from its camera, and the pixel
coordinates of the ball (once you’ve found it in the image) would correspond to the coordinates on the piece
of glass. In the absence of anything else, all you know is that the ball lies somewhere on a ray that begins
at your eye and passes through the marks on the glass. Of course, your robot knows something else: if your
camera is fixed with respect to your robot (i.e. you haven’t mounted it on a servo), then you know where the
ground plane is with respect to your camera. In most cases, the intersection of the ground plane with the
ray through the image of the ball will be enough for you to determine the location of the ball. In particular,
the angle to the ball can be easily approximated as the angle between a vertical line through the center of
the image and a line from the bottom-center of the image to the ball. Once you know the angle, you can
calculate the distance from the robot with some trig.

Depending on how well you can find red balls, you might be able to use the size of the ball as an indicator
of validity and distance. If you have a ball that has an area of only two pixels, it’s a good bet that it’s either
noise, or only part of a ball. Depending on the orientation of your camera, you may also be able to tell if a
red blob you found is floating in mid-air.

6.3 The Task

Try to independently reimplement the ball finder using either the algorithm described and documented in
this tutorial or something clever of your own devising. Extend the algorithm to handle cleanly the case of
multiple balls, and to at least detect the cases of overlapping and partially occluded balls. Ensure that your
algorithm is robust to changes in lighting conditions.

7



We have some sample images with which you can test your algorithms.4 Also look at the galleries from
years past for other examples and difficult corner cases. Your code should return useful results for most, if
not all, of the images. (If you don’t handle something, you can be sure that it will come up on contest day.)

When designing your code, try to structure it so that you will easily be able to add support for the other
elements of the playing field.

7 Closing Remarks

We hope that you will make an effort to have some working code by the beginning of IAP. It will save you
time and panic the night before the first checkpoint. Of course, tasks like these are never done, and the
results are never fully satisfactory, but you should be able to start IAP with something that “would do in a
pinch.” For the sake of your sanity (and ours), try to make your code clear, modular, and well commented.
You’d like to start off Maslab by plugging your algorithm directly into your robot code, and not spend the
first week trying to figure out what you wrote back in December when you should have been studying for
finals.

Finally, make friends with the Java API documentation and the Maslab website. Look at previous years’
team’s pages on the Wiki. Work together.

Good luck! We’ll see you in January.

4http://maslab.lcs.mit.edu/gallery/MASLab_2004/2004-01-13_Sample_Images/

8

http://maslab.lcs.mit.edu/gallery/MASLab_2004/2004-01-13_Sample_Images/


8 Code Listing

// Import the necessary libraries

import javax.imageio.*;

import java.io.*;

import java.awt.*;

import java.awt.image.*;

import java.awt.color.*;

import org.orcboard.camera.*;

/**

* ImageTutorial.java

*

* Demonstrates basic image processing on an image loaded from disk.

* Abstracts the process of loading an image, computing statistics on

* it, drawing on it, and writing it back to disk. If this code were

* to be used in a real robot, it would probably be called MaslabImage

* or something, and would have accessors for the varoius statistics.

* The isRed() routine would also probably be placed in another class

* (like MaslabColor, perhaps), along with other color routines.

*

* Created on December 1, 2004

*

* @author dlnelson & Maslab Staff

*/

// In mocking of the Instant Messenging community’s colloquial

// abreviations, I have adopted the following comment convention:

//

// /** introduces a javadoc comment

// // introduces a comment about the algorithm, or about the

// layout of the code

// IMHO introduces an editorial comment

// BTW introduces a sidebar related tangentially to nearby code

// WTF introduces a comment about a "gotcha" in the code, or

// explains an implementation specific piece of code whose

// purpose may not be readily apparent

// #*$@ introduces a comment displaying existential angst

public class ImageTutorial {

//

// Constants

//

// thresholds

private static final int RED_HUE_MAX = 7; //WTF Why is RED_HUE_MAX < RED_HUE_MIN?

private static final int RED_HUE_MIN = 220; // Because hue wraps around at red

// 220 = -35 (mod 256)

private static final int RED_SAT_MAX = 150;

private static final int RED_SAT_MIN = 77;

private static final int RED_VAL_MAX = 220; //WTF This is almost the whole range.

private static final int RED_VAL_MIN = 64; // Is it even worth the test?

// Remove it and find out.

//

// Member variables

//

// image state (initialized by constructor)

private BufferedImage im;

private int width, height;

// red blob statistics //#*$@ Are there better things to

private int area = 0; // which to initialize these? Yes.

private int x_position = 0, y_position = 0; // Do I care right now? No.

private int x_min = 0, x_max = 0, y_min = 0, y_max = 0;

9



//

// Member functions

//

/**

* Constructs a new ImageTutorial object, reads the specified image

* file from disk, and converts its pixel values to HSV color

* space

*

* @param filename the name of the file to read

* @throws IOException if the file cannot be opened or if the read

* fails (i.e. the file was not in a known format)

*/

public ImageTutorial(String filename) throws IOException {

// Create a File object bound to our filename

File f = new File(filename);

// read the image into a BufferedImage

im = ImageIO.read(f); //IMHO Yay for Java’s convenient runtime library

// Use Maslab’s nifty utility function to do most of the work

im = ImageUtil.rgbToHsv(im);

width = im.getWidth(); //BTW these won’t change, so cache them here.

height = im.getHeight(); // this will save some clutter later

}

/**

* Write the image out as a PNG file

*

* @param filename the name of the file to write

* @throws IOException if the file IO fails

*/

public void writeImage(String filename) throws IOException {

File f = new File(filename);

ImageIO.write(im, "png", f);

}

/**

* Determines if the given hsv color is red

*

* @param hsv the color in HSV packed format

* @return true if the color is red, false otherwise

*/

public static boolean isRed(int hsv) {

int val = hsv & 0xFF; //WTF What is this? It grabs the low 8 bits of hsv

//BTW hsv is stored in packed integer form, meaning

// that the 32 bits of the int are divided up as

// follows: xxxxxxxxhhhhhhhhssssssssvvvvvvvv

// | junk | hue | sat | val |

// The & 0xFF bit performs a bitwise AND with the

// mask 0xFF:

// xxxxxxxxhhhhhhhhssssssssvvvvvvvv

// & 00000000000000000000000011111111

// --------------------------------------

// val = 000000000000000000000000vvvvvvvv

int sat = (hsv >> 8) & 0xFF;

int hue = (hsv >> 16) & 0xFF;

//WTF The >> 16 is a bitwise shift. It shifts

// the hie portion of hsv into the lower

// 8 bits so that we can perform the mask

// as before.

//WTF Would (hsv >> 16) by itself have worked?

// Not necessarily. You might have thought

// that the high-order bits would have been

// filled with zeros after the shift. Not so!.

// All numeric types in Java are *signed*. The

10



// High order bits after a shift are filled

// with copies of the original high-order bit.

//#*$@ Well-behaved functions will have already

// zeroed the high byte of hsv, but...

//#*$@ Thank you Sun for only signed integers

// (Collective fist shaking)

//BTW Google for "2’s complement" for the gory

// details of signed arithmetic in binary

return (RED_HUE_MIN <= hue || hue <= RED_HUE_MAX) &&

(RED_SAT_MIN <= sat && sat <= RED_SAT_MAX) &&

(RED_VAL_MIN <= val && val <= RED_VAL_MAX);

//WTF Why || and not && for hue?

// Because RED_HUE_MIN > RED_HUE_MAX

//BTW You could avoid having to think about && or || once and for all

// by writing a general hueDistance(int a, int b) function like this:

// int absdiff = Math.abs(a-b);

// return Math.min(absdiff, Math.abs(absdiff-256));

}

/**

* Scans the image for red pixels and computes statistics about

* them

*

* @modifies all statistics member variables

*/

public void find_red_blob() {

// initialize statistics

area = 0;

x_position = y_position = 0;

x_min = y_min = Integer.MAX_VALUE;

//WTF Why MAX_VALUE? So that it will always

// update on the first pixel. We could also

// have used width and height.

x_max = y_max = 0;

// scan through every pixel in the image

for(int y = 0; y < height; y++) {

for(int x = 0; x < width; x++) {

//WTF Why for y, for x instead of the other

// way around? Performance issue.

//BTW Arrays in Java (and C, but not MATLAB)

// are stored in row-major-order, meaning

// that the right-most index changes the

// fastest as we move through memory. When

// we access a location in memory, the

// values surrounding it get loaded into the

// cache, and subsequent accesses to them is

// much faster. So, once we’ve accessed a

// row, the rest of it is probably in cache.

// grab the pixel value for this location

int pixel = im.getRGB(x,y);

//BTW Is this really the most efficient away to scan the image? Probably not.

// You can get access to a linear array of bytes in the form vhsvhsvhs...

// representing the pixels in row-major order (bytes reversed) like this:

// byte[] imData = ((DataBufferByte)im.getRaster().getDataBuffer()).getData();

// This way, the hsv components are already separated for you, and you can

// scan the array linearly as imData[3*(y*width+x)]

//BTW Note that myData here is a reference into the actual image data. Changing

// myData will change im.

// if it’s red, update statistics

if(isRed(pixel)) {

area++;

x_position += x;

y_position += y;

x_min = (x < x_min) ? x : x_min; //IMHO Yay for the conditional operator

y_min = (y < y_min) ? y : y_min; //WTF Conditional operator?

11



x_max = (x > x_max) ? x : x_max; // a ? b : c <==> if a then b else c

y_max = (y > y_max) ? y : y_max;

}

}

}

// finish updating statistics

if(area != 0) { //there may not have been any red

x_position /= area;

y_position /= area;

}

}

/**

* Draws statistics on the image. Specifically, draws the bounding

* box in blue, the center-of-mass as a green X, and colors white

* (because it shows up well) each pixel thought to be

* red. Performs a second scan of the image. Not intended to be

* efficient. If you want to color in each red pixel every time,

* you should move that code into find_red_blob(). You must call

* find_red_blob before calling this function.

*

* @throws IllegalStateException of find_red_blob() has not

* previously been called

* @modifies im

*/

public void renderStatistics() {

// make sure we’ve computed statistics

if(area == 0 && x_min == 0) //WTF Why is this test sufficient? Think about it.

throw new IllegalStateException("renderStatistics() called before find_red_blob()");

//Get a graphics context so we can draw on im

Graphics2D g = im.createGraphics();

//first things we draw are white

g.setColor(Color.white);

//iterate through the image

for(int y = 0; y < height; y++) {

for(int x = 0; x < width; x++) {

// for each pixel we think is red, color it white

if(isRed(im.getRGB(x,y))) {

g.drawLine(x,y,x,y); //WTF Yes, this is the best way

}

}

}

//now for the bounding box

g.setColor(Color.blue);

g.drawRect(x_min, y_min, x_max-x_min, y_max-y_min);

//WTF Note that drawRect() takes x, y, width, height;

//now for the center-of-mass

g.setColor(Color.green);

g.drawLine(x_position-10, y_position-10,

x_position+10, y_position+10);

g.drawLine(x_position-10, y_position+10,

x_position+10, y_position-10);

}

/**

* Sumarize the statistics as a string

*

* @return a String representation of the statistics

* @throws IllegalStateException if find_red_blob() has not

* prevoiusly been called

*/

public String statisticsToString() {

12



//make sure we’ve got meaningful statistics

if(area == 0 && x_min == 0)

throw new IllegalStateException("statisticsToString() called before find_red_blob()");

return "Area = "+area+"\n"+

"Center-of-mass = ("+x_position+","+y_position+")\n"+

"Bounding box = ("+x_min+","+y_min+"), ("+x_max+","+y_max+")\n"+

"Aspect ratio = "+((float)(x_max-x_min+1))/(y_max-y_min+1)+"\n";

//WTF Why the +1’s in aspect ratio? Well, if x_min==x_max, width=1. So,...

//WTF Why did I cast the numerator to float? To avoid integer division

}

/**

* Demonstrates the functions of ImageTutorial

*/

public static void main(String[] args) {

// Create the ImageTutorial object, and all that that implies

ImageTutorial it = null; //WTF initialize to null to placate the compiler

try {

it = new ImageTutorial("capture3.png");

}

catch(IOException ioe) {

System.out.println("Failed to create ImageTutorial object.");

ioe.printStackTrace();

System.exit(1);

}

// Do the work

it.find_red_blob();

// Show the work

it.renderStatistics();

// Print the statistics

System.out.println(it.statisticsToString());

// Write the image back to disk

try {

it.writeImage("capture3result.png");

}

catch(IOException ioe) {

System.out.println("Failed to write the image to disk");

ioe.printStackTrace();

System.exit(1);

}

}

}

13


	Introduction
	Image Processing in Maslab
	The HSV Color Space
	Example: Finding Red Blobs
	Overview
	Run the code
	The Code
	Read an image from disk
	Scan the image and compute statistics
	Draw on the image
	Print out the results
	Write the image back to disk

	Discussion

	Exercise: Blue Line Filtering
	Motivation
	A possible solution
	Discussion

	Exercise: Red Ball Finding
	Motivation
	World coordinates from image coordinates
	The Task

	Closing Remarks
	Code Listing

