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This lecture covers both the theory and an algorithmic side of Hankel optimal model order
reduction.

10.1 Basic properties of Hankel operators

This section provides preliminary backgroung for Hankel optimal model reduction.

10.1.1 Hankel operators

Let L2
r denote the set of all integrable functions e : R 7→ Rr such that

∫ ∞

−∞

|e(t)|2dt < ∞.

Let L2
r(−∞, 0) denote the subset of L2

r which consist of functions e such that e(t) = 0 for
t ≥ 0. The elements of L2

r(−∞, 0) will be called anti-causal in this lecture. Similarly, let
L2

r(0,∞) be the subset of functions e ∈ L2
r such that e(t) = 0 for t < 0. The elements of

L2
r(0,∞) will be called causal.

Let G = G(s) be a k-by-m matrix-valued function (not necessarily a rational one),
bounded on the jω-axis. The corresponding Hankel operator H = HG is the linear
transformation which maps anti-causal square integrable functions f ∈ L2

r(−∞, 0) to
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causal square integrable functions h = HGf ∈ L2
r(0,∞) according to the following rule:

h(t) = y(t)u(t), where y(t) is the inverse Fourier transform of Y (jw) = G(jω)F (jω),
F (jω) is the Fourier transform of f(t), and u(t) is the unit step function

u(t) =

{

1, t ≥ 0,
0, t < 0.

In terms of the (stable, but not necessarily causal) LTI system defined by G, the
Hankel operator maps anti-causal inputs f = f(t) to the causal parts h = h(t) = y(t)u(t)
of the complete system response y(t). In particular, when G is anti-stable, i.e. is a proper
rational transfer matrix without poles s with Re(s) ≤ 0, the associated LTI system is
anti-causal, and hence the resulting Hankel operator HG is zero. More generally, adding
an anti-stable component to G does not affect the resulting G.

10.1.2 Hankel matrices

Let a > 0 be a fixed positive number. Then functions

Θk(jω) =

√
2a

s + a

(

a − s

a + s

)k

, k = 0, 1, 2, . . .

form an orthonormal basis in the space of stable strictly proper transfer functions, in the
sense that for every such function H = H(s) there exists a square summable sequence of
real numbers h0, h1, h2, . . . satisfying

H(jω) =

∞
∑

k=0

hkΘk(jω),

in the sense that

1

2π

∫ ∞

−∞

∣

∣

∣

∣

∣

H(jω) −
N

∑

k=0

hkΘk(jω)

∣

∣

∣

∣

∣

2

dω =

∞
∑

k=N+1

|hk|2 → 0 as N → ∞.

In a similar sense, the inverse Fourier transforms θk = θk(t) of Θk = Θk(jω), form an
orthonormal basis in L2

1(0,∞), and the inverse Fourier transforms θk(−t) of Θk(−jω)
form an orthonormal basis in L2

1(0,∞).
The following lemma allows one to establish a matrix representation of a Hankel

operator with respect to input basis {θk(−t)}∞k=0
and output basis {θk(t)}∞k=0

.
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Lemma 10.1 Let

gk =
1

π

∫ ∞

−∞

G(jω)

(

a + jω

a − jω

)k
adω

a2 + ω2
.

Then the result h = h(t) of applying HG to f(t) = θr(−t) is given by

h(t) =

∞
∑

k=0

gr+k+1θk(t).

An important implication of the lemma is that the matrix of HG with respect to the
input/output bases {θk(−t)}∞k=0

, {θk(t)}∞k=0
is the Hankel matrix

ΓG =















g1 g2 g3 g4

g2 g3 g4

g3 g4

g4

. . .















.

In general, gk are matrices with real coefficients, in which case ΓG is called the block
Hankel matrix.

Proof Consider the decomposition

h(t) =

∞
∑

k=0

hkθk(t).

By orthonormality of θk(·),

hk =

∫ ∞

0

h(t)θk(t)dt =

∫ ∞

−∞

y(t)θk(t)dt,

where y is the response of the stable LTI system associated with G to f(t) = θr(−t). By
the Parceval formula,

hk =
1

2π

∫ ∞

−∞

Θk(−jω)G(jω)Θr(−jω)dω

=
1

2π

∫ ∞

−∞

G(jω)

(

a + jω

a − jω

)k+r+1
2adω

(a + jω)(a − jω)
= gk+r+1.
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10.1.3 Singular values of a Hankel operator

Let M be an a-by-b matrix representing a linear transformation from Rb to Ra. Remember
that the operator norm of M is defined as the minimal upper bound for all ratios |Mv|/|v|,
where v ranges over the set of all non-zero vectors in Rb. In addition, the r-th singular
number of M can be defined as the minimal operator norm of the difference ∆ = M −M̂ ,
where M̂ ranges over the set of all matrices with rank less than r.

These definitions extend naturally to linear transformations of other normed vector
spaces (possibly infinite dimensional). In particular, for a linear transformation M from
L2

m(−∞) to L2
k(0,∞), its operator norm is defined as the square root of the minimal

upper bound for the ratio

∫ ∞

0

|(Mf)(t)|2dt/

∫

0

−∞

|f(t)|2dt,

where
∫

0

−∞

|f(t)|2dt > 0.

Such transformation M is said to have rank less than r if for every family of r functions
f1, . . . , fr ∈ L2

k(−∞, 0) there exist constants c1, . . . , cr, not all equal to zero, such that

c1(Mf1) + · · ·+ cr(Mfr) ≡ 0.

Finally, the r-th singular number of M can be defined as the minimal operator norm of
the difference ∆ = M − M̂ , where M̂ ranges over the set of all matrices with rank less
than r.

This allows us to talk about the k-th singular number of the Hankel operator HG

associated with a given matrix-valued function G = G(jω), bounded on the imaginary
axis. The largest singular number is called the Hankel norm ‖G‖H of G, while the k-th
singular number is called the k-th Hankel singular number of G.

For rational transfer matrices G, calculation of singular numbers of the correspond-
ing Hankel operator can be done using observability and controllability Gramians. The
following theorem was, essentially, proven in the lectures on balanced truncation.

Theorem 10.1 Let A be an n-by-n Hurwitz matrix, B, C be matrices of dimensions n-
by-m and k-by-n respectively, such that the pair (A, B) is controllable, and the pair (C, A)
is observable. Let Wc, Wo be the corresponding controllability and observability Gramians.
Then, for G(s) = C(sI − A)−1B, the Hankel operator HG has exactly n positive singular
numbers, which are the square roots of the eigenvalues of WcWo.
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It is also true that a Hankel operator with a finite number of positive singular numbers
is defined by a rational transfer matrix.

Theorem 10.2 Let G = G(jω) be a bounded matrix-valued function defined on the imag-
inary axis. Let a > 0 be a positive number. If the Hankel operator HG less than r positive
singular numbers, then the coefficients

gk =
1

π

∫ ∞

−∞

G(jω)

(

a + jω

a − jω

)k
adω

a2 + ω2

coincide for k > 0 with such coefficients of a stable strictly proper transfer matrix G1 of
order less than r.

For some non-rational transfer matrices, analytical calculation of σi may be possible.
For example, the i-th largest singular number of HG, where G(s) = exp(−s), equals 1 for
all positive i.

In general, singular numbers of HG will converge to zero if G = G(jω) is continuous
on the extended imaginary axis (note that G(s) = exp(−s) is not continuous at ω = ∞).
The converse statement is not true.

10.1.4 The Hankel optimal model reduction setup

Let G = G(s) be a matrix-valued function bounded on the jω-axis. The task of Hankel
optimal model reduction of G calls for finding a stable LTI system Ĝ of order less than a
given positive integer m, such that the Hankel norm ‖∆‖H of the difference ∆ = G − Ĝ
is minimal.

Since Hankel operator HG represents a “part” of the total LTI system with transfer
matrix G, Hankel norm is never larger than H-Infinity norm. Hence, Hankel optimal
model reduction setup can be viewed as a relaxation of the “original” (H-Infinity optimal)
model reduction formulation. While no acceptable solution is available for the H-infinity
case, Hankel optimal model reduction has an elegant and algorithmically efficient solution.

10.2 The AAK theorem

The solution of the Hankel optimal model reduction problem is based on the famous
Adamyan-Arov-Krein (AAK) theorem, presented in this section.
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10.2.1 The AAK Theorem

The famous Adamyan-Arov-Krein theorem provides both a theoretical insight and (taking
a constructive proof into account) an explicit algorithm for finding Hankel optimal reduced
models.

Theorem 10.3 Let G = G(s) be a matrix-valued function bounded on the jω-axis. Let
σ1 ≥ σ2 ≥ . . . σm ≥ 0 be the m largest singular values of HG. Then σm is the minimum
of ‖G − Ĝ‖H over the set of all stable systems Ĝ of order less than m.

In other words, approximating Hankel operators by general linear transformations of
rank less than m cannot be done better (in terms of the minimal L2 gain of the error)
than approximating it by Hankel operators of rank less than m.

The proof of the theorem, to be given in this section for the case of a rational trans-
fer matrix G = G(s), is constructive, and provides a simple state space algorithm for
calculating the Hankel optimal reduced model.

10.2.2 H-Infinity quality of Hankel optimal reduced models

It is well established by numerical experiments that Hankel optimal reduced models usu-
ally offer very high H-Infinity quality of model reduction. A somewhat conservative de-
scription of this effect is given by the following extension of the AAK theorem.

Theorem 10.4 Let G = G(s) be a stable rational function. Assume that the Hankel
singular numbers σk = σk(G) of G satisfy

σm−1 > σm = σm+1 = · · · = σm+r−1 > σm+r.

σk(G) = σm(G) for m ≤ k < m+r, and σm+r(G) < σm(G). Let σ̃m > σ̃m+1 > σ̃m+2 > . . .
be the ordered sequence of different Hankel singular values of G, starting with σ̃m = σm

and σ̃m+1 = σm+r. Then

(a) there exists a Hankel optimal reduced model ĜH
m of order less than m such that

‖G − ĜH
m‖∞ ≤ σm +

r
∑

k>m

σk;

(b) there exists a model Ĝ∗
m of order less than m such that

‖G − Ĝ∗
m‖∞ ≤

∑

k≥m

σ̃k.
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Just as in the case of the basic AAK theorem, the proof of Theorem 10.4 is construc-
tive, and hence provides an explicit algorithm for calculation of reduced models with the
described properties. In practice, the actual H-Infinity norm of model reduction error is
much smaller.

It is important to remember that the Hankel optimal reduced model is never unique
(at least, the “D” terms do not have any effect on the Hankel norm, and hence can be
modified arbitrarily). The proven H-Infinity model reduction error bound is guaranteed
only for a specially selected Hankel optimal reduced model. Also, the reduced model from
(b) is not necessarily a Hankel optimal reduced model.

10.2.3 AAK theorem: general comments on the proof

It is sufficient to consider the case when the dimension of f = f(t) equals the dimension
of y = y(t) (otherwise, add zero columns to B or zero rows to C).

Since Hankel operator of an anti-stable system is zero, and rank of a Hankel operator
of a system of order less than m is less than m, the inequality

‖G − Ĝm‖H ≥ σm(G)

holds when the order of Ĝm is less than m.
What remains to be proven is the existence of a Ĝm of order less than m such that

‖G − Ĝm‖H ≥ σm(G).

This will be done by constructing explicitly a state space model of transfer matrix L(s) =
ĜH

m(s) + F H(s), where ĜH
m is stable and has order less than m, F H is anti-stable, and

‖G − L‖∞ = σm(G). Then, by definition, ‖G − ĜH
m‖H ≤ σm(G).

Actually, a stronger conclusion will be reached: L can be chosen in such way that

E(jω)′E(jω) = σm(G)I ∀ ω ∈ R. (10.1)

Condition (10.1) will be used later to derive upper bounds for ‖G − ĜH
m‖∞.

10.2.4 Partitions of the coefficient matrices

Assume that G is defined by a minimal (controllable and observable) balanced finite di-
mensional state space model

ẋ = Ax + Bf, y = Cx (10.2)
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with a Hurwitz n-by-n matrix A. Without loss of generality, consider the case when the
controllability and observability Gramian W = Wc = Wo of (10.2) has the form

W =

[

Σ 0
0 γIr

]

,

where γ = σm(G), the m-th singular number of G (multiplicity r), is not an eigenvalue of
Σ = Σ′ > 0.

Let

A =

[

A11 A12

A21 A22

]

, B =

[

B1

B2

]

, C =
[

C1 C2

]

be the corresponding block partitions of A, B, C (for example, A22 is an r-by-r matrix).
Since

AW + WA′ = −BB′, WA + A′W = −C ′C,

the blocks Aij , Bi, Ci satisfy the relations

ΣA11 + A′
11Σ = −C ′

1C1, (10.3)

ΣA12 + γA′
21 = −C ′

1C2, (10.4)

γ(A22 + A′
22) = −C ′

2C2, (10.5)

A11Σ + ΣA′
11 = −B1B

′
1, (10.6)

γA12 + ΣA′
21 = −B1B

′
2, (10.7)

γ(A22 + A′
22) = −B2B

′
2. (10.8)

Let
∆ = Σ − γ2Σ−1.

Combining (10.3) with (10.6) (multiplied by γΣ−1 on both sides) yields

∆A11 + A11∆ = γ2Σ−1B1B
′
1Σ

−1 − C ′
1C1. (10.9)

Similarly, combining (10.4) with (10.7) yields

A′
12∆ = −C ′

2C1 + γB2B
′
1Σ

−1. (10.10)

Finally, (10.5) together with (10.8) implies that B2B
′
2 = C ′

2C2, which in turn means that
C ′

2U = B2 for some unitary matrix U .
In the following section, it will be useful to know that A11 has no eigenvalues on the

imaginary axis (though in general it may have eigenvalues with positive and negative real
parts).
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Lemma 10.2 Let

a =

[

a11 a12

a21 a22

]

, b =

[

b1

b2

]

, c =
[

c1 c2

]

, p = p′ =

[

q 0
0 γI

]

be such that
pa + a′p = −c′c, ap + pa′ = −bb′.

If γ2 is not an eigenvalue of q and a has no eigenvalues on the imaginary axis then a11

has no eigenvalues on the imaginary axis.

Proof Assume to the contrary that a11f = jωf for some f 6= 0. Then

−|c1f |2 = −f ′c′1c1f = f ′(qa11 + a′
11q)f = jωf ′qf − jωf ′qf = 0.

Hence c1f = 0.
a′

11qf = (−c′1c1 − qa11)f = −jωqf.

Then
−|b′1qf |2 = −(qf)′b1b

′
1(qf) = (qf)′(a11q + qa′

11)(qf) = 0.

Hence b′1qf = 0. Therefore

a11q
2f = (−b1b

′
1 − qa′

11)qf = jωq2f,

which, combined with a11f = jωf , yields

a11(q
2 − γ2I)f = jω(q2 − γ2I)f. (10.11)

On the other hand, equalities

a′
12q + γa21 = −c′2c1, a21q + γa′

12 = −b2b
′
1

imply
a21(q

2 − γ2)f = 0. (10.12)

Combining (10.11) and (10.12) yields

[

a11 a12

a21 a22

] [

(q2 − γ2)f
0

]

= jω

[

(q2 − γ2)f
0

]

,

which contradicts the assumptions.
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10.2.5 AAK theorem proof: explicit formulae and certificates

In terms of the matrices introduced in the previous subsection, it is easy to define explicitly
a state space model of L, as well as the certificates of the H-Infinity norm bounds for G−L.

Lemma 10.3 Let

AL = A11 − ∆−1(γ2Σ−1B1 − γC ′
1U)B′

1Σ
−1, (10.13)

BL = B1 + ∆−1(γ2Σ−1B1 − γC ′
1U), (10.14)

CL = C1 − γUB′
1Σ

−1, (10.15)

DL = γU. (10.16)

Then

(a) the pair (AL, BL) is controllable;

(b) the pair (CL, AL) is observable;

(c) AL (dimension n−r) has m−1 eigenvalues with negative real part and n−r−m+1
eigenvalues with positive real part;

(d) transfer matrix E(s) = γ−1(G(s) − L(s)) satisfies

E(jω)′E(jω) = γ2I.

(e) The identity

γ2|f |2 − |Cx − CLxL − DLf |2 − 2Re

{[

x
xL

]′

H

[

Ax + Bf
ALxL + BLf

]}

= 0 ∀ x, f, xL

(10.17)
holds for

H = H ′ =





Σ 0 −∆
0 γIr 0

−∆ 0 ∆



 .

Proof Identity (10.17) in (e) can be checked “by inspection”.
Statement (d) follows from (e) by substituting x, xL, f such that

jωx = Ax + Bf, jωxL = ALxL + BLf,

since the real part equals zero in this case.
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To prove (a),(b), note first that, according to (10.17), identities

Ha + a′H = −c′c, aH−1 + H−1a′ = −bb′,

where

H−1 =





γ−2Σ 0 γ−2Σ
0 γ−1I 0

γ−2Σ 0 γ−2Σ∆−1Σ



 ,

hold for

a =

[

A 0
0 AL

]

, b =

[

B
BL

]

, c =
[

C −CL

]

.

Hence
∆AL + A′

L∆ = −C ′
LCL, AL(Σ∆−1Σ) + (Σ∆−1Σ)A′

L = −BLB′
L.

Since ∆ and Σ∆−1Σ are not singular, controllability of (AL, BL) and observability of
(CL, AL) will follow if AL has no eigenvalues on the imaginary axis. However, if f ′AL =
jωf ′ for some f 6= 0 then f ′B′

L = 0. Since

AL + BLB′
1Σ

−1 = A11 + B1B
′
1Σ

−1,

this would imply
f ′(A11 + B1B

′
1Σ

−1) = jωf ′.

Since
(A11 + B1B

′
1Σ

−1)Σ + Σ(A11 + B1B
′
1Σ

−1)′ = B1B
′
1,

this implies f ′B1 = 0 and hence f ′A11 = jωf ′, which is impossible due to Lemma 10.2.
Finally, since (AL, BL) is controllable, (CL, AL) is observable, and AL has no eigenval-

ues on the imaginary axis, statement (c) follows.


