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Reduction of uncertain and parameterized models1

This lecture generalizes the classical balanced truncation algorithm and the standard up-
per bound for its approximation error for models represented as feedback interconnections
of known LTI systems and uncertainty blocks described by incremental Integral Quadratic
Constraints (IQC).

11.1 Analysis of uncertain models

This section introduces a class of uncertain models, as well as a specific technique for the
analysis of such systems.

11.1.1 Static IQC models

Uncertain models considered in this lecture are defined by the following list of parameters:

(a) a real nx + nv + ny-by-nx + nw + nf matrix

M =





a bw bf

cv dvw dvf

cy dyw dyf



 ,

where a is nx-by-nx and dvw is nv-by-nw;
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(b) a decomposition
nx = nx1 + nx2 + · · ·+ nxr

of nx as a sum of r ≥ 1 positive integers;

(c) a set σ̃ = {σ} of quadratic forms σ = σ(v̄, w̄), where the real vector arguments v̄, w̄
have dimensions nv and nw respectively, such that

σ(v̄, 0) ≥ 0 ∀ v̄ ∈ Rnv .

These parameters define a set of feedback systems with nf -dimensional input f and ny-
dimensional output y, each system defined by the system of equations





z(t)
v(t)
w(t)



 = M





x(t)
w(t)
f(t)



 ∀ t, (11.1)

zi(·) = δi(xi(·)) (i = 1, . . . , r), (11.2)

w(·) = ∆(v(·)), (11.3)

where zi(t), xi(t) are the nxi-dimensional components of

z(t) =







z1(t)
...

zr(t)






, x(t) =







x1(t)
...

xr(t)






,

∆ is a causal L2 stable system with nv-dimensional input and nw-dimensional output,
and δi is a linear causal L2 stable SISO system (applied component-wise in (11.2)). Here
∆ ranges over the set of all stable causal systems which are odd (i.e. ∆(−v) = −∆(v)
for all inputs v) and satisfy the incremental Integral Quadratic Constraints (abbreviation
IQC) defined by σ ∈ σ̃, in the sense that

∫ T

−∞

σ(v1(t) − v2(t), w1(t) − w2(t))dt ≥ 0 (11.4)

for all σ ∈ σ̃, w1(·) = ∆(v1(·)), w2(·) = ∆(v2(·)). For i = 1, δi is the LTI system with
transfer function 1/(s + 1). For i > 1, δi ranges over the set of all linear causal systems
satisfying the condition

∫ T

−∞

{z∗(t)xi(t) − |z∗(t)|
2}dt ≥ 0 (11.5)
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Figure 11.1: A general uncertain model

whenever z∗(·) = δi(x∗(·)) is a response of δi to an input x∗ = x∗(t) of finite energy.
On Figure 11.1, M represents a set of known static linear relations, ∆ is the un-

structured feedback, not to be modified in the reduced model, and δi are the structured
feedbacks, dimensions of which is to be modified in the reduced model.

A very important special case of setup (11.1)-(11.3) is given by system

ẋ(t) = Ax(t) + Bww(t) + Bff(t), (11.6)

v(t) = Cvx(t) + Dvww(t) + Dvff(t), (11.7)

y(t) = Cyx(t) + Dyww(t) + Dyff(t), (11.8)

w(·) = ∆(v(·)), (11.9)

where ∆ is defined the same way as before.
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Figure 11.2: Special uncertain model format

Since (11.6) is equivalent to

ẋ(t) + x(t) = x(t) + Ax(t) + Bww(t) + Bff(t),

which in turn is identical to

x(·) = (s + 1)−1(x(·) + Ax(·) + Bww(t) + Bff(t)),

equations (11.6)-(11.8) can be re-written as (11.1)-(11.3), where r = 1, a = A+I, bw = Bw,
bf = Bf , etc.

Linear time invariant models with no uncertainty are also a special case of (11.1)-
(11.3).

11.1.2 Models satisfying static IQC

A stable causal LTI system with transfer function δ = δ(s) satisfies the IQC

∫ T

−∞

{z(t)x(t) − |z(t)|2}dt ≥ 0

for all input/output pairs (x(t), z(t)) of finite energy if and only if

Re(δ(jω)) − |δ(jω)|2 ≥ 0 ∀ ω ∈ R,

i.e. if and only if the frequency response of δ is contained within the disc of radius 0.5
centered at s0 = 0.5. In particular, transfer function δ1(s) = 1/(s + 1) and multiplication
by a real constant δ ∈ [−1, 1] satisfy the IQC.
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As long as nonlinear relations are concerned, the transformation v 7→ w defined by
w(t) = φ(v(t)), where φ : R 7→ R is an odd function such that φ̇(v̄) ∈ [a, b], satisfies the
incremental IQC

∫ T

−∞

σ(v1(t) − v2(t), w1(t) − w2(t))dt ≥ 0

for
σ(v̄, w̄) = (w̄ − av̄)(bv̄ − w̄).

In practice, IQC models represent a conservative bounding of a given nonlinear or
time-varying feedback, allowing a relatively simple derivation of upper bounds of closed
loop L2 gains (which includes L2 gains of model reduction error systems).

11.1.3 L2 gain bounds for systems with static IQC

Since (11.2),(11.3) imply that

∫ T

−∞

(xi(t) − zi(t))
′Hizi(t)dt ≥ 0

for an arbitrary family of symmetric matrices Hi = H ′

i ≥ 0, and

∫ T

−∞

σ(v(t), w(t))dt ≥ 0

for all σ ∈ σ̃, a sufficient condition for the L2 gain of (11.1)-(11.3) not to exceed γ > 0
is given by the existence of symmetric matrices Hi = H ′

i ≥ 0 and σ ∈ σ̃ such that the
quadratic form

γ2|f̄ |2 − |ȳ|2 +
r

∑

i=1

2(x̄i − z̄i)
′Hiz̄i + σ(v̄, w̄) ≥ 0 (11.10)

is positive semidefinite for all real vectors f̄ , ȳ, x̄i, z̄i, v̄, w̄ of appropriate dimensions,
subject to the linear equalities

ȳ = cyx̄ + dyww̄ + dyf f̄ , v̄ = cvx̄ + dvww̄ + dvf f̄ .

In a certain limited sense, this condition is also necessary, meaning that if such Hi =
H ′

i ≥ 0 and σ ∈ σ̃ deo not exist then one can find causal systems δi, ∆ satisfying all listed
conditions, such that L2 gain of the resulting system is larger than γ.

When the system has no uncertainty (i.e. r = 1 and nw = nv = 0), the criterion
becomes a standard KYP lemma condition for calculating L2 gain of an LTI system.
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11.2 Balanced truncation for static IQC models

In this section, a balanced truncation algorithm is developed for reducing the dimensions
nxi of the xi components of static IQC models (11.1)-(11.3). The resulting reduced model
will have the same set σ̃. An upper bound for the L2 gain (from f to y − ŷ) of the
difference between the elements of the original and reduced families of systems (defined
with the same δi, ∆) will be obtained.

11.2.1 The simplified setup

The derivation of balanced reduced model is based on working on one particular compo-
nent of xi at a time, while leaving the rest intact. Consequently, it becomes sufficient to
consider only the case when r = 1, since the components zk and xk with k 6= i can be
appended to w and v respectively without loss of generality. This leads to a simplified
setup, in which the original model (11.1)-(11.3) has the form

x = δ(ax + bww + bff), (11.11)

v = cvx + dvww + dvff, (11.12)

y = cyx + dyww + dyff, (11.13)

w(·) = ∆(v(·)), (11.14)

where δ in (11.11) is a scalar causal bounded linear transformation, satisfying the IQC
(11.5), applied component-wise, and ∆ is an odd causal bounded transformation satisfying
the incremental IQC (11.4). The reduced model is sought in the form

xr = δ(âxr + b̂wwr + b̂ff), (11.15)

vr = ĉvxr + dvwwr + dvff, (11.16)

yr = ĉyxr + dywwr + dyff, (11.17)

wr(·) = ∆(vr(·)), (11.18)

where δ, ∆ are the same but the dimension of xr(t) is smaller than that of x(t). An
approximation quality is to be asessed by establishing an upper bound for the L2 gain
from f to y−yr, provided that δ and ∆ in (11.11),(11.14) are the same as in (11.15),(11.18),
and satisfy the prescribed IQC.

11.2.2 Weak Gramians of uncertain systems

Recall that for an ordinary state space model

ẋ = Ax + Bf, y = Cx
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with a Hurwitz matrix A, the observability Gramian Wo can be characterized as the
smallest matrix Wo = W ′

o ≥ 0 such that the quadratic form

2x̄′WoAx̄ + |Cx̄|2 ≤ 0

is negative semidefinite, which means the upper bound

|y(t)|2 ≤ −
d

dt
x(t)′Wox(t),

subject to system equations with f = 0. Similarly, the inverse W−1
c of the controllability

Gramian is the smallest positive definite matrix such the quadratic form

2x̄′W−1

c (Ax̄ + Bf̄) − |f̄ |2 ≤ 0

is negative semidefinite, which means the lower bound

|f(t)|2 ≥
d

dt
x(t)′W−1

c x(t),

subject to system equations with an arbitrary f .
Accordingly, symmetric positive definite matrices Wo, Wc are called weak Gramians of

uncertain system (11.11)-(11.14) if there exist quadratic forms σo, σc ∈ σ̃ such that

2x̄′Wo(ax̄ + bww̄) + σo(v̄, w̄) + |ȳ|2 ≤ 0 (11.19)

subject to
ȳ = cyx̄ + dyww̄, v̄ = cvx̄ + dvww̄,

and
2x̄′W−1

c (ax̄ + bww̄ + bf f̄) + σc(v̄, w̄) − |f̄ |2 ≤ 0 (11.20)

subject to
ȳ = cyx̄ + dyww̄ + dyf f̄ , v̄ = cvx̄ + dvww̄ + dvf f̄ .

According to this definition, a system may have many weak Gramians. Since a weak
observability Gramian W+

o establishes an upper bound of output energy in the absense
of external inputs, i.e.

∫ T

0

|y(t)|2dt ≤ x(0)′Wox(0) for f ≡ 0,
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the smaller weak observability Gramians are more useful. Similarly, since a weak con-
trollability Gramian establishes a lower bound of input energy needed to reach a certain
state from zero, in the sense that

∫ T

0

|f(t)|2dt ≥ x(T )′W−1

c x(T ) for x(0) = 0,

the smaller weak controllability Gramians are more useful.
In the ordinary LTI case, the usual observability and controllability Gramians are min-

imal weak controllability and observability Gramians, respectively. This is not necessarily
true in the general case of static IQC models: the set of weak observabilty Gramians may
have no single element which is less or equal than any other weak observability Gramian,
and the set of weak controllability Gramians may have no single element which is less
or equal than any other weak controllability Gramian. Accordingly, practical calculation
of weak Gramians should include some sort of minimization. For example, a minimal
observability Gramian Wo of uncertain system (11.11)-(11.14) can be defined as the argu-
ment of minimum of trace of W+

o subject to (11.19). The corresponding optimization with
respect to Wo > 0, σ̃o ∈ σ̃ is convex (in most cases, a semidefinite program). Similarly,
a minimal controllability Gramian Wc of (11.11)-(11.14) can be defined as inverse of the
argument of maximum of trace of (W+

c )−1 subject to (11.20), which also leads to convex
optimization with respect to (W+

c )−1 > 0, σc ∈ σ̃.

11.2.3 Balancing and truncation

Applying a non-singular linear change of state coordinates x := Sx in (11.11)-(11.14)
yields an equivalent model, in which the coefficient matrices are updated according to

a := S−1aS, bw := S−1bw, bf = S−1bf , cv := cvS, cy := cyS,

and a particular pair of weak controllability and observability Gramians Wc, Wo is updated
according to

W new
o := S ′WoS, W new

c := S−1Wc(S
′)−1.

As in the case of balancing of ordinary state space models, it is possible to choose S in
such a way that W new

o = W new
c .

More precisely, let g1, . . . , gn be an ordered basis of eigenvectors of WcWo, i.e. WcWogk =
γ2

kgk, where γ1 ≥ γ2 ≥ · · · ≥ γn > 0, normalized in such a way that g′

kWogk = γk. Then,
for

S = [g1, g2, . . . , gn],
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the identity

S ′WoS = S−1Wc(S
′)−1 =











γ1 0
0 γ2

0
. . . 0

γn











(11.21)

holds. The pair of weak Gramians W new
o , W new

c is called balanced for the uncertain system
in this case.

Truncation of the uncertain system with balanced weak Gramians is performed by
choosing an index k (typically such that γk > γk+1) and defining the coefficients of the
truncated uncertain system by

â = a11, b̂w = bw1, b̂f = bf1, ĉv = cv1, ĉy = cy1, (11.22)

d̂vw = dvw, d̂vf = dvf , d̂yw = dyw, d̂yf = dyf , (11.23)

where

S−1aS =

[

a11 a12

a21 a22

]

, S−1bw =

[

bw1

bw2

]

, S−1bf =

[

bf1

bf2

]

, S ′c′v =

[

c′v1

S ′c′v2

]

, c′y =

[

c′y1

c′y2

]

,

(11.24)
and the number of rows in a11, bw1, bf1, c

′

v1, c
′

y1 equals k.
The following theorem generalized the classical upper bound of the H-Infinity error in

balanced truncation.

Theorem 11.1 Assume that δ is a causal stable linear system satisfying the IQC in
(11.5). Assume ∆ is a stable causal odd system satisfying the incremental IQC in (11.4)
with quadratic forms σ = σo and σ = σc. Let Wc, Wo be positive semidefinite satisfying
(11.19), (11.20). Let S be a non-singular matrix satisfying (11.21), where γ1 ≥ · · · ≥
γn ≥ 0. Let the reduced model (11.15)-(11.18) of system (11.11)-(11.14) be defined by
(11.22)-(11.24). Then L2 gain from f to y − yr does not exceed 2

∑

i>k γi, where each
value of γi is counted once.

11.2.4 Proof of the truncation error bound

The proof is based on the following observation.

Lemma 11.1 Assume that matrices P = P ′, Q = Q′, aij, bwi, bfi, cvi, cyi, where i, j ∈
{1, 2}, and a scalar γ ≥ 0 satisfy

2x′

1P (z1 − x1) + 2γx′

2(z2 − x2) + σo(v, w) + |y|2 ≤ 0, (11.25)
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subject to

z1 = a11x1 + a12x2 + bw1w),

z2 = a21x1 + a22x2 + bw2w,

v = cv1x1 + cv2x2 + dvww,

y = cy1x1 + cy2x2 + dyww,

and
2x′

1Q(z1 − x1) + 2γ−1x′

2(z2 − x2) + σc(v, w)− |f |2 ≤ 0, (11.26)

subject to

z1 = a11x1 + a12x2 + bw1w + bf1f,

z2 = a21x1 + a22x2 + bw2w + bf2f,

v = cv1x1 + cv2x2 + dvww + dvff,

for all real vectors x1, x2, w, f of compatible dimensions. Then

(a) Matrices P = P ′, Q = Q′, a11, bw1, bf1, cv1, cy1 satisfy

2x′

rP (zr − xr) + σo(vr, wr) + |yr|
2 ≤ 0, (11.27)

subject to

zr = a11xr + bw1wr,

vr = cv1xr + dvwwr,

yr = cy1xr + dywwr,

and
2x′

rQ(zr − xr) + σc(vr, wr) − |f |2 ≤ 0, (11.28)

subject to

zr = a11xr + bw1wr + bf1f,

vr = cv1xr + dvwwr + dvff,

for all real vectors xr, wr, f of compatible dimensions.
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(b) Matrix

H =





γ2Q + P 0 γ2Q − P
0 2γ 0

γ2Q − P 0 γ2Q + P





satisfies
|y − yr|

2 − 4γ2|f |2+

+2





x1

x2

xr





′

H





z1 − x1

z2 − x2

z3 − x3



 + σo(v − vr, w−wr) + γ2σc(v + vr, w + wr) ≤ 0, (11.29)

subject to

z1 = a11x1 + a12x2 + bw1w + bf1f,

z2 = a21x1 + a22x2 + bw2w + bf2f,

zr = a11xr + bw1wr + bf1f,

v = cv1x1 + cv2x2 + dvww + dvff,

vr = cv1xr + dvww + dvff,

y = cy1x1 + cy2x2 + dyww + dyff,

yr = cy1xr + dyww + dyff,

for all vectors x1, x2, xr, w, wr, f of compatible dimensions.

The assumptions of the lemma mean that a couple of weak Gramians of system (11.11)-
(11.14) is given by

Wo =

[

P 0
0 γIr

]

, W−1

c =

[

Q 0
0 γ−1Ir

]

.

Here γ plays the role of the smallest of the “singular numbers” γi, of multiplicity r.
Conclusions (a) and (b) describe properties of the system resulting from truncating the
last r states. Condition (a), which follows from the assumptions by substituting x2 = 0,
means that P and Q are weak observability Gramians for the reduced system. Condition
(b), obtained by adding the inequality from (11.25) (with x1 replaced by x1 − xr and
w replaced by w − wr) to the inequality from (11.26) (with x1 replaced by x1 + xr, w
replaced by w+wr, and f replaced by 2f), multiplied by γ2, establishes an L2 gain bound
of 2γ from f to the error system output y − yr. Together, (a) and (b) yield a proof of
Theorem 11.1 by induction.


