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Reduction of systems with real parameters1

In this lecture, model reduction of LTI systems depending on real parameters is discussed.
While it appears that there is no single approach offering a satisfactory solution to the
problem, a number of techniques studied in the previous lectures can be extended to the
case of parameterized models.

To streamline the presentation, we will only consider the case of a single constant
a-priori bounded parameter, when the original model is defined by

ẋ(t) = (A + FδL)x(t) + Bf(t), y(t) = Cx(t), (12.1)

where δ ∈ [−1, 1] is the parameter, A, B, C, F, L are given matrices of dimensions n-by-n,
n-by-m, k-by-n, n-by-d, and d-by-n respectively. It is assumed that A+FδL is a Hurwitz
matrix for all δ ∈ [−1, 1]. The objective is to derive a reduced model in the form

ẋr(t) = Ar(δ)xr(δ) + Br(δ)f(t), yr(t) = Cr(δ)xr(t), (12.2)

where Ar(δ), Br(δ), Cr(δ) are easy to calculate for a given δ ∈ [−1, 1]. The reduced model
in (12.2) is acceptable when, for every δ ∈ [−1, 1], Ar(δ) is a Hurwitz matrix and the
H-Infinity norm of the model reduction error system is small.
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12.1 Treating parameter dependence as model uncertainty

System (12.1) can be viewed as an uncertain system

ẋ = Ax + Fw + Bf, y = Cx, v = Lx, w(·) = ∆(v(·)), (12.3)

where ∆ is the operator of multiplication by constant δ ∈ [−1, 1].
As ∆ is linear, and can be described by a set of integral quadratic constraints (IQC) the

balanced truncation approach can be applied to produce reduced models with guaranteed
stability and error bounds.

12.1.1 Static IQC for real parameter uncertainty

Static IQC describe the dependence of w on v in terms of integral relations
∫

∞

0

σ(x(t), w(t), f(t))dt ≥ 0, (12.4)

where σ are quadratic forms, which has to be satisfied whenever x, v, w, f are square
integrable signals satisfying conditions (12.3). Once a set σ̃ of such σ is available, the
(weak) controllability and observability Gramians can be defined as symmetric matrix
solutions Wo, Wc > 0 of the quadratic form inequalities

2x′Wo(Ax + Fw) + |Cx|2 + σo(x, w, 0) ≤ 0 ∀ x, w, (12.5)

2x′W−1

c
(Ax + Bf + Fw) − |f |2 + σc(x, w, f) ≤ 0 ∀ x, w, f, (12.6)

where σo, σc ∈ σ̃, and the standard balanced truncation algorithm utilizing Wo, Wc can
be applied to get a reduced projected model with guaranteed stability and the usual error
bounds.

A set of IQC for ∆(v) = δv, where δ ∈ [−1, 1] is an uncertain constant is given by

σ(x, w, f) = σ0

R
(x, w, f) = (Lx)′R(Lx) − w′Rw, R = R′ ≥ 0 (12.7)

where R = R′ ≥ 0 is an arbitrary positive semidefinite matrix. Indeed, since w(t) = δv(t),
where δ ∈ [−1, 1] is a scalar, we have

v′Rv − w′Rw = (1 − δ2)v′Rv ≥ 0.

In this case, (12.5) is equivalent to the LMI with respect to Wo, R0 ≥ 0:
[

WoA + A′Wo + C ′C + L′RoL WoF

F ′Wo −Ro

]

≤ 0,
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which, for Ro > 0, can be transformed into

WoA + A′Wo + C ′C + L′RoL + WoFR−1

o
F ′Wo ≤ 0.

As one can see, the usual Lyapunov inequality (linear with respect to Wo) is transformed
into a Riccati inequality (convex quadratic with respect to Wo), parameterized by Ro =
R′

o
> 0.
Similarly, (12.6) is equivalent to the LMI with respect to W−1

c
, R0 > 0:





W−1
c

A + A′W−1
c

+ L′RcL W−1
c

B W−1
c

F

B′W−1
c

−Im 0
F ′W−1

c
0 −Rc



 ≤ 0,

which can be transformed into the Riccati inequality

AWc + WcA
′ + WcL

′RcLWc + BB′ + FR−1

c
F ′ ≤ 0,

quadratic convex with respect to Wc and parameterized by Rc = R′

c
> 0.

It is important to understand that IQC (12.4) defined by (12.7) are satisfied for a very
large class of systems ∆. For example, multiplication by a time-varying scalar δ = δ(t)
satisfies the same IQC. Moreover, it van be shown that the IQC are also valid when
δ = δ(s) is an arbitrary stable SISO LTI system with H-Infinity norm not exceeding
1. Informally, it would be fair to say that IQC (12.4) defined by (12.7) does not utilize
time-invariance and memorylessness properties of system ∆ defined as multiplication by
a constant scalar.

Additional IQC can be obtained by noticing that
∫

∞

0

2δv(t)′Hv̇(t)dt = δv(t)′Hv(t)|∞0 = 0

when H = H ′ is a symmetric matrix, x, w, f are square integrable and x(0) = 0. In other
terms, quadratic forms

σ(x, w, f) = σ1

H
(x, w, f) = 2(Lx)′HL(Ax + Fw + Bf), H = H ′ (12.8)

define valid static IQC for ∆. Note that quadratic forms σ1
H

do not define, in general,
IQC valid when ∆ is time-varying or has memory.

If LF = 0 and LB = 0, one can use the equality
∫

∞

0

δv(t)′Rv̈(t)dt = −δ

∫

∞

0

v̇(t)′Rv̇(t)dt
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to derive additional IQC (12.4) with

σ(x, w, f) = σ+

R
(x, w, f) = 2w′RLA(Ax + Fw + Bf) + (LAx)′R(LAx), R = R′ ≥ 0,

(12.9)
and

σ(x, w, f) = σ−

R
(x, w, f) = −2w′RLA(Ax + Fw + Bf) + (LAx)′R(LAx), R = R′ ≥ 0.

(12.10)
Indeed, these tricks with differentiation can be continued further when LAB = 0 and
LAF = 0.


