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Objectives and challenges of model reduction'

This introductory lecture discusses general formulatiions and basic difficulties associated
with model reduction. The problem of simplifying matrix-vector multiplication is used as
an example.

1.1 Introduction

Model reduction is one of the most widely encountered “dynamical systems” tasks. In
practice, it enables practical use of first principles models for physical phenomena de-
scribed by partial differential equations, advanced control and signal processing algo-
rithms. Model reduction can also be used to facilitate system identification, data com-
pression, and knowledge extraction.

This class will concentrate on mathematical techniques of model reduction applicable
to linear time invariant (LTI) systems, while also venturing into the field of nonlinear
models whenever possible. Intentionally simplified, if not trivialized, application examples
will be used for motivation and illustration of the theory. The lecture notes presentation
will be rigorous, but many formal details will be skipped in the lectures.

1.1.1 Motivating example: the heat equation

Consider the task of modeling the dynamical dependence of time-varying temperature
y = y(t) at a point A of a thin non-homogeneous circular wire on the temperature u = u(t)
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at the opposite point B, where the wire is being forcefully heated/cooled (see Figure 1.1).
The relation between u = u(t) and y = can be written in the form of a partial
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Figure 1.1: Example: the heat equation

differential equation
dv(t,0) d*v(t,0)
dt de? ’
where v(t,#) is temperature of the wire at time ¢ at the point with angular position
(# = 0 corresponds to point A), i.e

v(t,—m) =v(t,m) =u(t), y(t) =wv(0),

and K (f) > 0 is a given position-dependent coefficient describing local properties of the
wire. This model, while accurate subject to some idealizing assumptions, is not good for
simulation or feedback control design. A model reduction technique would generate a low
order L'TT system providing an accurate approximation of the true dynamics.

= K(9)

1.1.2 Motivating example: system identification

An important task performed repeatedly by wireless communication devices is “channel
identification”, which essentially means finding a good model for electromagnetic signal
propagation between two communication points. This can be accomplished by sending
a white noise signal through the channel and calculating the statistical spectrum of the
signal received. As the next step, this (noisy) spectral data has to be fitted by a low
order rational function, as shown on If the order of approximation is allowed to be large
(to match the number of data points available), the resulting model will try to fit the
noise component of the data, which is highly undesirable. An optimal model reduction
technique will help to avoide noise fitting by finding the best low order rational approxi-
mation.

1.1.3 Simplification of general system models

A general objective of model reduction as a mathematical discipline can be described as
that of finding efficient ways of deriving adequate simplified models of complex systems.
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Figure 1.2: Example: noisy data fitting

Here the word system refers to a transformation which defines a family of real param-
eters (output data) as a function of another family of real parameters (input data). A
major object of study in these lectures will be the class of linear time-invariant dynamical
systems.

A particular technique of model reduction would deal with a specific class of system
descriptions by

e specifying a quantative system complexity measure for models from the class;

defining a notion of accuracy (“adequacy”) for replacing one (“complex”) model
with another (“reduced”) one;

e supplying a numerical algorithm which actually performs the reduction;

presenting evidence (experimental or via a mathematical proof) that the algorithm
produces accurate models of low complexity in reasonable time (“algorithm cost”);

Accordingly, to compare two methods of model reduction, one has to take into account
accuracy, system complexity reduction, and algorithm cost guarantees associated with
them.

1.2 Example: reduction of matrix-vector products

Action of a given linear transformation M : f — y on its unspecified input f is frequently
represented as multiplication of a variable real m-vector f by a given real n-by-m matrix
M: y = Mf. In some applications (image processing, optical simulations), it is desirable



to perform such matrix-vector multiplications, where M is known a-priori, as quickly
as possible, which typically means minimization of the number of computer operations
(multiplication, addition, copying) needed to compute y = M f. It may also be admissible
to have a certain amount 7 of relative error when calculating y quickly.

While the standard definition of a matrix-vector product involves mnm operations,
some linear transformations f +— y = M f can be performed much faster, depending
on M. Moreover, it could be possible to reduce the minimal number of operations by
perturbing M slightly.

1.2.1 Matrix model reduction: a number-of-operations setup

The task of finding, for a given M, a faster way of producing an approximation of the
product y = M f, can be viewed as a model reduction problem, with the notions of
“systems”, “complexity”, “accuracy”, and “efficiency” defined as follows.

Systems: every real n-by-m matrix M defines a matriz model system with the set of
admissible inputs defined as the set R" = { f} of all real m-vectors f, and outputs y € R"
defined by y = M f.

System complezity: define complexity N' = N (M) of a matrix model system as the
minimal number of binary addition, multiplication, and memory copy operations needed
to implement the input-to-output transformation f — y = M f. Note that, while it is
easy to define N'(M) it is usually quite difficult to calculate the quantity.

Accuracy: define a numerical measure of error of approximating an original matrix
M by a “reduced” matrix M as the maximal Euclidean norm |e| of the output matching
error vector e = M f — M f when the Euclidean norm of input f is bounded by |f| <1.1In
linear algebra, this quantity is known as the operator norm |M — M]||, or largest singular
value Opax (M — M) of M — M.

Algorithm cost: define efficiency of a model reduction algorithm as the maximal num-
ber of operations needed to produce a reduced model M for a given M.

Even after the basic notions of system class, complexity, accuracy, and efficiency are
defined, there is a variety of possible approaches to follow. For example, one can formulate
an optimal matrix reduction problem (given M and 7 > 0, find M = M (M, r) such that
|M — M|| < r, and N'(M) is as small as possible). Alternatively, one can pick a trans-
formation M — F(M) and try to prove, either formally or via numerical experiments,
that, for most M, N(F(M)) < cIN(M), and |M — F(M)|| is small. However, despite
the number of options available, most of them are likely to end up nowhere, due to the
difficulty of working with the “uncomputable” complexity measure N (M).



1.2.2 Matrix model reduction: a rank setup

As it frequently happens, a relatively minor modification of the matrix reduction setup
leads to a computationally efficient algorithm.

Let us note that the rank of M defines an upper bound on the minimal number of
operations needed to implement transformation f +— M f. Indeed, if £ = rank(M) then
M = VU where V is an n-by-k matrix, and U is a k-by-m matrix. Hence, M f can be
found by forming U f first ( km operations) and then calculating VU f ( kn operations),
which yields a total of k(n+ m) operations. When k¥ < n and k£ < m, this constitutes a
substantial reduction in the number of operations.

Thus, it appears to be natural to consider a modified matrix reduction setup, in which
N (M ) is replaced by rank(M ) as a system complexity measure. This will be referred to
as the matriz rank reduction. Note that this is not equivalent to the number-of-operations
setup, because multiplication by some matrices of full rank can be performed very quickly
(for example, multiplication by an upper triangular n-by-n matrix with 1’s above the
diagonal can be performed in n steps).

1.2.3 Optimal matrix rank reduction

A solution of the optimal matrix rank reduction problem is a standard part of introductory
linear algebra. Indeed, let o7 = \g, where k € {1,2,...,m} and o > 0, be the ordered
eigenvalues of M'M (i.e. o1 > 0y > -+ > 0}). Then |M — M|| > o} for every matrix
M of rank less than k. Moreover, a matrix M of rank less than k such that ||M — M|| =
o can be defined by M = VV'MUU’, where the columns of U are the first k — 1
orthonormal eigenvectors of M'M (i.e. those corresponding to eigenvalues Ay, ..., A\ 1),
and the columns of V' are the first ¥ — 1 orthonormal eigenvectors of M M.

Thus, when the accuracy measure is defined as the operator norm, optimal matrix
rank reduction can be implemented via the so-called singular value decomposition, which
is, essentially eigenvalue decomposition of positive semidefinite matrices. It is interesting
to note that for many other accuracy measures there is still no efficient solution available
for the optimal matrix rank reduction problem.

1.3 Challenges of model reduction

There is a number of formulation changes which will complicate the matrix reduction
process dramatically. It is instructive to discuss some of these modifications, as they are
typical for the general model reduction research area.



1.3.1 Partially defined systems

We started with the assumption that all coefficients of M are known precisely. This is fre-
quently not the case: some of the coefficients may be unknown, while a general constraint
is placed on their dependence on the index (say, |M;; — M; j+1| < 0.01). Alternatively, a
noise factor may be present in all coefficient data.

1.3.2 A system which is too large

A very large matrix can be defined “analytically”, while being too large to be stored in
the memory of a computer. For example, what about a 102°-10%° matrix M with entries
1

M;; = ?
Y2442+ 52 + cos(i)

1.3.3 Non-linear and uncertain systems

Already a very simple type of nonlinearity — parameter dependence — makes a model
reduction problem much harder. Model reduction of more general nonlinear systems
remains largely an uncharted territory.

1.3.4 How to compare model reduction methods?

Model reduction methods have to be compared with respect to many parameters (accu-
racy, algorithm cost, type of complexity measure, etc.) An algorithm which is optimal
accuracy-wise may be prohibitevily expensive, and a cheap algorithm may produce ex-
tremely inadequate reduced models. Moreover, theoretical proofs of performance are rare.



