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Model reduction by projection: general properties1

This lecture covers some basic properties of projection methods, a general class of powerful
model reduction algorithms.

4.1 Common projection schemes

A projection method can be viewed as application of a “lossy” compression to a system’s
state, and re-writing equations for the state’s dynamics in terms of a compressed rep-
resentation. Depending on a system and model class (linear vs. non-linear, state-space
vs. input/output, time-varying vs. time-invariant, etc.), different implementations of this
approach become typical.

4.1.1 Projection of finite order state space LTI models

The sequence of operations for obtaining a reduced CT LTI SS model

d

dt
x̂(t) = Âx̂(t) + B̂f(t), ŷ(t) = Ĉx̂(t) + D̂f(t)

from the original higher-order model

d

dt
x(t) = Ax(t) + Bf(t), y(t) = Cx(t) + Df(t)

can be described in the following way.
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Step 1: apply an invertible coordinate change x(t) = Sx̄(t), where S is an invertible square
matrix, to re-write the original system equations in the form

d

dt
x̄(t) = Āx̄(t) + B̄f(t), y(t) = C̄x̄(t) + D̄f(t),

where
Ā = S−1AS, B̄ = S−1B, C̄ = CS, D̄ = D.

Step 2: partition the new state vector x̄(t) as

x̄(t) =

[

x̄1(t)
x̄2(t)

]

,

where the dimension of x̄1(t) equals the desired order of the reduced system; parti-
tion the Ā, B̄, C̄ matrices accordingly:

Ā =

[

Ā11 Ā12

Ā21 Ā22

]

, B̄ =

[

B̄1

B̄2

]

, C̄ =
[

C̄1 C̄2

]

.

Step 3: define the reduced system by

Â = Ā11, B̂ = B̄1, Ĉ = C̄1, D̂ = D.

The following reasoning stays usually behind such series of manipulations. At step
1, the system states are re-arranged to place the “most important” ones as the first few
components of the new state vector x̄(t). At step 2, one decides which components of
x̄(t) are to be “ignored” (set to zero) in the new equations. Step 3 defines the resulting
simplified state equations.

Selecting a “good” initial transformation S, as well as determining how many states
of x̄(t) to keep, is what defines a particular projection-based model reduction algorithm.
One can invest a lot of effort in finding a good S, and come up with a high quality reduced
model. Alternatively, one can obtain S according to some “cheap” strategy, to get a barely
adequate reduced model. Actually, it can be shown that, by selecting an arbitrary S, one
can obtain an arbitrary (subject to some non-essential restrictions) reduced order system
from a given model.

For example, an unobservable CT LTI SS model (i.e. the one with the observability
matrix Mo not having full rank) can be transformed to a form with

Ā =

[

Ā11 0
Ā21 Ā22

]

, B̄ =

[

B̄1

B̄2

]

, C̄ =
[

C̄1 0
]

.
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In this case the reason to consider the state x̄2(t) “unimportant” is its unobservability,
and the projection reduced model

Â = Ā11, B̂ = B̄1, Ĉ = C̄1, D̂ = D

has a transfer matrix which is identical to that of the original system.
As another example, consider the stable causal LTI system defined by

ẋ1 = x1 + x2 + f,

ẋ2 = −3x1 − 2x2,

y = x1.

When the initial state transformation x = Sx̄ is defined by the identity matrix S = I = I2,
the reduced first order system has transfer function 1/(s−1) – very little in common with
the original system.

4.1.2 An alternative interpretation of projection MOR

For efficient numerical calculations, as well as for the sake of formal mathematical ma-
nipulations, a different (though equivalent) interpretation of the projection approach can
be introduced.

Let n be the order of the original model, and let r < n be the desired reduced system
order. A particular projection can be defined by specifying an n-by-r matrix V and an
r-by-n matrix U such that

UV = Ir.

The reduced system is then defined by substituting x(t) = V x̂(t) into the original equa-
tions, and by post-multiplying the resulting differential equation by U on the left, which
yields

Â = UAV, B̂ = UB, Ĉ = CV, D̂ = D.

There are two important messages about this representation of a projection MOR
framework. First, the outcome of the procedure cannot be changed much by replacing
columns of V with their linear combinations, as well as by replacing rows of U by their
linear combinations, as follows from the next statement.

Theorem 4.1 If matrices V1, V2, U1, U2 are such that

(a) U1V1 = U2V2 = Ir,

(b) the linear spans of the columns of V1 and V2 are identical, and
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(c) the linear spans of the rows of U1 and U2 are identical,

then the systems

Ĝ1 :=

(

U1AV1 U1B
CV1 D

)

, Ĝ2 :=

(

U2AV2 U2B
CV2 D

)

have identical transfer matrices.

Proof According to (b), there exists an r-by-r matrix Sv such that V2 = V1Sv. Similarly,
according to (c), there exists an r-by-r matrix Su such that U2 = SuU1. Hence, from (a),
SuSv = I, i.e. Su = S−1

v
, and the state space model of Ĝ2 is obtained from that of Ĝ1 by

replacing its state x̂1 with x̂2 = Sux̂1. Since invertible linear transformations of the state
vector do not change transfer matrices, the proof is complete.

In particular, without loss of generality, one can limit attention only to those matrices
V for which V ′V = Ir. Similarly, one can limit attention only to those matrices U for
which UU ′ = Ir, though in this case it would be restrictive to assume that V ′V = Ir as
well.

To relate the two approaches to projection MOR, note that a pair of matrices U, V
satisfying the condition UV = Ir can always be complemented to a pair of mutually
inverse matrices

Su =

[

U
∆u

]

, Sv =
[

V ∆v

]

.

If

S−1
v

ASv =

[

Ā11 Ā12

Ā21 Ā22

]

, S−1
v

B =

[

B̄1

B̄2

]

, CSv =
[

C̄1 C̄2

]

,

where Ā11, B̄1, C̄1 have appropriate dimensions, we have

Ā11 = UAV, B̄1 = UB, C̄1 = CV,

i.e. the two projections yield same outcome.
Similarly one can relate the original framework to the coordinate-free one by defining

V = S

[

Ir

0

]

, U =
[

Ir 0
]

S−1,

where x = Sx̄ is the original coordinate transformation.
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4.1.3 Projections for other model types

For discrete time LTI SS models, projection MOR is defined in exactly the same way as
in the continuous time case:

x[k + 1] = Ax[k] + Bf [k], y[k] = Cx[k] + Df [k]

is reduced to

x̂[k + 1] = UAV x̂[k] + UBf [k], y[k] = CV x̂[k] + Df [k],

where UV = I.
For descriptor system models, the modification is straightforward:

Eẋ(t) = Ax(t) + Bf(t), y(t) = Cx(t) + Df(t)

is replaced with

UEV
d

dt
x̂(t) = UAV x̂(t) + UBf(t), y(t) = CV x̂(t) + Df(t),

where the constraint UV = I is dropped, but instead a requirement that det(sUEV −
UAV ) is not identically zero is imposed, provided that det(sE−A) is not identically zero.

For nonlinear time-invariant state space models

ẋ(t) = a(x(t), f(t)), y(t) = h(x(t), f(t)),

the assumed transformation from x̂(t) to x(t) and back should be allowed to become
nonlinear, i.e.

x(t) = V (x̂(t)), x̂(t) = U(x(t)),

where V : Rr 7→ Rn and U : Rn 7→ Rr are given differentiable functions satisfying the
identity

U(V (z)) = z ∀ z ∈ Rr.

The resulting model is

d

dt
x̂(t) = U̇(V (x̂(t)))a(V (x̂(t)), f(t)), y(t) = h(V (x̂(t)), f(t)).

While the number of state gets reduced this way, it is not obvious (and is not proven
to any degree of generality) that the number of arithmetic operations needed to evaluate
dx̂(t)/dt is smaller than the number of operations needed to evaluate dx(t)/dt.
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For linear time-varying models

ẋ(t) = A(t)x(t) + B(t)f(t), y(t) = C(t)x(t) + D(t)f(t),

the projected reduced model is frequently defined as

d

dt
x̂(t) = U(t)(A(t)V (t) − V̇ (t))x̂(t) + U(t)B(t)f(t), y(t) = C(t)V (t)x̂(t) + D(t)f(t),

where U, V are differentiable functions of time such that U(t)V (t) = I at all moments.
Once again, while reduction in the dimension of the state space is indisputable, the
situation with complexity of reduced model simulation is not as clear, since the new
coefficients Â(t), B̂(t), Ĉ(t) may be less regular functions of time, which usually requires
extra effort in simulation.

For general causal input/output models, where an explicit state description may be
unavailable, the past input/output history

x(t) = (f(τ)|τ≤t, y(τ)|τ≤t)

can serve as a replacement. Then the reduced state can be defined by a transformation

x̂(t) = U(x(t)) = U(f(τ)|τ≤t, y(τ)|τ≤t).
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4.2 System properties preserved under projections

Consider an n-th order state space LTI model

d

dt
x(t) = Ax(t) + Bf(t), y(t) = Cx(t) + Df(t), (4.1)

with transfer matrix
G(s) = D + C(sIn − A)−1B,

and its projection reduced r-th model

d

dt
x̂(t) = UAV x̂(t) + UBf(t), ŷ(t) = CV x̂(t) + Df(t), (4.2)

with transfer matrix
Ĝ(s) = D + CV (sIr − UAV )−1UB,

where U, V are matrices of dimensions r-by-n and n-by-r respectively, such that UV = Ir,
and r < n. As it was mentioned before, no system property of importance (such as
stability, passivity, transfer matrix values, etc.) is guaranteed to be preserved by a generic
projection of this type. However, when the projection matrices U, V are properly defined,
some features of the original system can be transfered to the reduced one.

4.2.1 Preservation of transfer matrix moments

This subsection provides sufficient conditions for preservation of transfer matrix moments
under projection model reduction. Here by the moments of a transfer matrix H = H(s) at
a given point s0, which is not a pole of H(·), we mean the values H (k)(s0) of its derivatives
and its own value H(s0) = H(0)(s0) at s = s0.

Theorem 4.2 Consider system (4.1) and its projection reduced model (4.2). Let s0 ∈ C

be a complex number which is not an eigenvalue of A or UAV .

(a) If, for some column vector f̄ , (s0In−A)−k−1Bf̄ belongs to the set R(V ) of all linear
combinations of columns of V for all k = 0, . . . , N then

G(k)(s0)f̄ = Ĝ(k)(s0)f̄ for k = 0, . . . , N.

(b) If q̄C(s0In −A)−k−1 is a linear combination of the rows of U for some row vector q̄
for all k = 0, . . . , N then

q̄G(k)(s0) = q̄Ĝ(k)(s0) for k = 0, . . . , N.
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This observation is frequently used in determining the projection matrices U, V : the
rows of U and the columns of V are chosen as bases of the linear subspaces spanned by
the real and imaginary parts of the rows of

C(jωc

i
In − A)−k−1, k = 0, . . . , N c

i
,

and the columns of
(jωb

i
In − A)−k−1B, k = 0, . . . , N b

i
,

respectively, where ωc

i
and ωb

i
are selected “important” frequencies, and the maximal

powers N c

i
, N b

i
indicate the degree of accuracy desired at ωc

i
, ωb

i
. The resulting projec-

tion algorithms provide a numerically robust implementation of the moments matching
approach to model reduction, to be discussed in future lectures.

Proof Without loss of generality, assume that D = 0. To prove (a), note that

G(k)(s0) = k!C(s0In − A)−k−1B (k = 0, 1, . . . ),

and
Ĝ(k)(s0) = k!CV (s0Ir − UAV )−k−1UB (k = 0, 1, . . . ).

Note that the vectors

xk = (s0In − A)−k−1Bf̄, (k = 0, 1, . . . )

are uniquely defined by the recursive linear equations

s0x0 = Ax0 + Bf̄, s0xk = Axk + xk−1, (k = 1, . . . ).

By the assumption, xk = V x̂k for k = 0, . . . , N for some vectors x̂k. Hence

s0V x̂0 = AV x̂0 + Bf̄, s0V x̂k = AV x̂k + V x̂k−1, (k = 1, . . . , N).

Multiplying these equalities by U on the left yields

s0x̂0 = Âx̂0 + B̂f̄ , s0x̂k = Âx̂k + x̂k−1, (k = 1, . . . , N),

where Â = UAV and B̂ = UB. Hence

x̂k = (s0Ir − Â)−k−1B̂f̄ , (k = 0, . . . , N),

which in turn yields

C(s0In − A)−k−1Bf̄ = Cxk = CUx̂k = Ĉx̂k = Ĉ(s0Ir − Â)−k−1B̂f̄
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for k = 0, . . . , N , thus proving (a).
The proof of (b) is similar, and uses

pk = q̄C(s0In − A)−k−1

in place of xk. By the assumption, pk = p̂kU for k = 0, . . . , N for some row vectors p̂k.
Hence

s0p̂0U = p̂0UA + q̄C, s0p̂kU = p̂kUA + p̂k−1U, (k = 1, . . . , N).

Multiplying these equalities by V on the right yields

s0p̂0 = p̂0Â + q̄Ĉ, s0p̂k = p̂kÂ + p̂k−1, (k = 1, . . . , N),

where Ĉ = CV . Hence

p̂k = q̄C(s0Ir − Â)−1, (k = 0, . . . , N),

which yields

q̄C(s0In − A)−k−1B = pkB = p̂kUB = p̂kB̂ = q̄Ĉ(s0Ir − Â)−k−1B̂

for k = 0, . . . , N , thus proving (b).

The results of this subsection apply equally to discrete time LTI state space mod-
els. They can also be extended to the case of descriptor models, to yield the following
statement, which is proven by a similar argument.

Theorem 4.3 Consider the descriptor system model

E
d

dt
x(t) = Ax(t) + Bf(t), y(t) = Cx(t) + Df(t),

and its projection reduced model

Ê
d

dt
x̂(t) = Âx̂(t) + B̂f(t), ŷ(t) = Ĉx̂(t) + Df(t),

where
Â = UAV, Ê = UEV, B̂ = UB, Ĉ = CV,

and U, V are matrices of dimensions r-by-n and n-by-r respectively, such that r < n. Let
s0 ∈ C be a complex number such that both matrices s0E −A and s0Ê − Â are invertible
.
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(a) If, for some column vector f̄ , [(s0E − A)−1E]k(s0E − A)−1Bf̄ belongs to the set
R(V ) of all linear combinations of columns of V for all k = 0, . . . , N then

G(k)(s0)f̄ = Ĝ(k)(s0)f̄ for k = 0, . . . , N,

where
G(s) = C(sE − A)−1B + D, Ĝ(s) = Ĉ(sÊ − Â)−1B̂ + D̂.

(b) If q̄C(s0E −A)−1[E(s0E −A)−1]k is a linear combination of the rows of U for some
row vector q̄ for all k = 0, . . . , N then

q̄G(k)(s0) = q̄Ĝ(k)(s0) for k = 0, . . . , N.

4.2.2 Stability preservation

In most applications, a reduced model of a stable system is required to be stable. However,
stability preservation does not come automatically in projection model reduction.

The following result provides a sufficient condition for stability of projection reduced
systems in the continuous time case. Remember that a controllable and observable state
space model (4.1) defines a stable causal system if and only if A is a Hurwitz matrix (all
eigenvalues have negative real part), or, equivalently, if there exists a symmetric strictly
positive definite matrix P = P ′ > 0 such that the Lyapunov equality

PA + A′P = −R (4.3)

is satisfied for some positive semidefinite symmetric matrix R ≥ 0 such that the pair (A, R)
is controllable (note that the controllability is implied, in particular, when R is strictly
positive definite). Such P = P ′ defines an energy-like quantity V (x(t)) = x(t)′Px(t) which
is guaranteed not to increase when the external signal f = f(t) equals zero. In many
applications, P = P ′ is readily available from the physical laws of energy conservation
and dissipation.

Theorem 4.4 Consider system (4.1) and its projection reduced model (4.2). Let P = P ′

and V be such that
V ′PV > 0, V ′(PA + A′P )V < 0.

If U is defined by
U = (V ′PV )−1V ′P

then Â = UAV is a Hurwitz matrix satisfying the Lyapunov inequality

P̂ Â + Â′P̂ < 0 for P̂ = V ′PV.
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Proof The proof is based on a straightforward verification of the identity

P̂ Â = V ′PAV.

The theorem suggests that stability of the reduced system can be guaranteed easily by
limiting the freedom of selecting U for a given V : to use the result, one has U uniquely
defined by V and a conserved energy measure matrix P . Note that condition V ′(PA +
A′P )V < 0 can be replaced by the weaker one:

V ′(PA + A′P )V = −R̂,

where R̂ = R̂′ ≥ 0 and the pair (Â, R̂) is controllable.
For descriptor models, similar results are available. Remember that a certificate of

(marginal) stability for a descriptor system

E
d

dt
x(t) = Ax(t) + Bf(t), y(t) = Cx(t) + Df(t) (4.4)

is given by a symmetric matrix P = P ′ such that E ′PE ≥ E ′E and

E ′PA + A′PE ≤ 0. (4.5)

Theorem 4.5 Let P = P ′ be a symmetric n-by-n matrix and V be an n-by-r matrix such
that

P̂ = V ′E ′PEV > 0 and V ′(E ′AP + PA′E ′)V < 0.

Let
U = (V ′E ′PEV )−1V ′E ′P.

Then the reduced system

Ê
d

dt
x̂(t) = Âx(t) + B̂f(t), ŷ(t) = Ĉx̂(t) + Df(t),

where
Ê = UEV = Ir, Â = UAV, B̂ = UB, Ĉ = CV,

is stable, and has a Lyapunov function

V̂ (x̂(t)) = x̂(t)′P̂ x̂(t)

which decreases monotonically for system solutions with f(t) = 0.
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Proof The proof of this theorem is a straightforward verification of the identity

P̂ Â = V ′E ′PAV.

Similar stability preservation results are also available for discrete time models

x[k + 1] = Ax[k] + Bf [k], y[k] = Cx[k] + Df [k], (4.6)

where the stability of a minimal state space model (4.6) is equivalent to A being a Schur
matrix (all eigenvalues strictly inside the unit disc), and a stability certificate is usually
given in the form of a symmetric positive definite matrix P = P ′ > 0 such that the
discrete time Lyapunov inequality

P − A′PA > 0

is satisfied.

Theorem 4.6 Consider a discrete time LTI model (4.6). Let P = P ′ ≥ 0 and V be
matrices of dimensions n-by-n and n-by-r respectively, such that

V ′PV > 0, V ′(A′PA − P )V < 0.

If U is defined by
U = (V ′PV )−1V ′P

then Â = UAV is a Schur matrix satisfying the Lyapunov inequality

Â′P̂ Â − P̂ < 0 for P̂ = V ′PV,

and hence the projection reduced model

x̂[k + 1] = UAV x̂[k] + UBf [k], ŷ[k] = CV x̂[k] + Df [k]

is stable.

Proof The proof is based on a straightforward verification of the inequality

PV (V ′PV )−1V ′P ≤ P.

In fact, the assumption V ′(A′PA − P )V < 0 in the theorem formulation can be relaxed
to the weaker one

V ′PV − V ′A′PV (V ′PV )−1V ′PAV > 0.
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4.2.3 L2 gain and passivity preservation

Let us call a stable LTI system model with a proper rational transfer matrix H = H(s)
contracting if

σmax(H(jω)) = ‖H(jω)‖ < 1 ∀ ω ∈ R.

A formally different, but actually very similar definition concerns passivity. A stable LTI
system model with a proper square rational transfer matrix H = H(s) is called passive if

H(jω) + H(jω)′ < 0 ∀ ω ∈ R,

where the prime sign denotes Hermitian conjugation.
Both contractivity and passivity serve as frequency domain conditions for input/output

energy conservation, having an interpretation that one gets less energy out of a system
than the amount that was put into the system. In circuits applications, for example,
contractivity applies to voltage in/voltage out subsystems with large input resistance
and small output resistance, so that the supplied/extracted energies equal the integrals
of input/output squared, while passivity applies to single-port blocks with voltage and
current serving as input and output, so that the difference between supplied and extracted
energies equals the integral of the input/output product. Contractivity and passivity are
important because feedback interconnections of energy preserving systems preserve the
total energy, which implies stability.

As it can be expected, all cases of passivity and contractivity of state space mod-
els come with a positive definite quadratic Lyapunov function representing a conserved
(dissipated) energy quantity. Mathematically, such statements are special cases of the
Kalman-Yakubovich-Popov Lemma, which will be presented here without a proof and
with a simplifying assumption of strict properness of H(s).

Theorem 4.7 Let
ẋ(t) = Ax(t) + Bf(t), y(t) = Cx(t)

be a minimal model of an n-th order stable strictly proper causal system with transfer
matrix H = H(s). Then

(a) H = H(s) is contracting if and only if there exists a symmetric positive definite
matrix P = P ′ > 0 such that the Riccati inequality

PA + A′P + C ′C + PBB′P < 0

is satisfied;



14

(b) H = H(s) is passive if and only if there exists a symmetric positive definite matrix
P = P ′ > 0 such that

C = B′P and PA + A′P < 0.

The matrix inequality from (a) means that

dV (x(t))

dt
≤ |f(t)|2 − |y(t)|2

for all solutions of the system equations, where

V (x̄) = x̄′P x̄ ≥ 0

is the “potential energy” of the system. Similarly, the matrix inequality from (b) means
that

dV (x(t))

dt
≤ 2f(t)′y(t).

It turns out that the same way of selecting U when P and V are given, that was
used to preserve stability in projection model reduction, can be employed to preserve
contractivity and passivity as well.

Theorem 4.8

(a) If P = P ′ is such that

P̂ = V ′PV > 0 and V ′(PA + A′P + C ′C + PBB′P )V < 0,

then the projection reduced model

d

dt
x̂(t) = Âx̂(t) + B̂f(t), ŷ(t) = Ĉx̂(t), (4.7)

where
Â = UAV, B̂ = UB, Ĉ = CV, U = (V ′PV )−1V ′P,

is contracting, and its coefficients satisfy the Riccati inequality

P̂ Â + Â′P̂ + Ĉ ′Ĉ + P̂ B̂B̂′P̂ < 0.

(b) If P = P ′ is such that

CV = B′PV, P̂ = V ′PV > 0 and V ′(PA + A′P )V < 0

then the projection reduced model (4.7) is passive, and its coefficients satisfy

Ĉ = B̂′P̂ and P̂ Â + Â′P̂ < 0.


