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Here we discuss the method of model reduction via proper orthogonal decomposition

(POD).

Motivation from statistics

POD is a method originating in statistical analysis of vector data. Consider the case when
the same phenomena is measured m times, each measurement xk, k = 1, . . . , m being a
vector containing a large number n of real entries: xk ∈ Rn. (For example xk could be
a digital image obtained at the k-th experiment.) An important objective of statistical
analysis of data is to discover interdependencies within the data, and to reduce the data
set to a much smaller number r ≪ n of parameters.

Mathematically, the situation can be described by the optimization problem

E|x − Px|2 7→ min,

where x is a vector random variable taking values in Rn, E denotes the expected value,
and P is a projection operator of rank r, i.e.

P = V U, UV = Ir.

The problem has an unsurprising solution in terms of r dominant eigenvectors of the
covariance matrix

W = Wx = Exx′.
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If σ2
1 ≥ σ2

2 ≥ . . . are the ordered eigenvalues of W , (σk ≥ 0), and vk are the corresponding
orthonormalized eigenvectors, i.e.

Wvk = σ2

kvk, v′

ivk = δik,

then an optimal P is the orthonormal projection

P = V V ′, V = [v1 v2 . . . vr].

Moreover, the optimal P is unique if and only if σr > σr+1.
In statistical applications, the covariance matrix Wx is replaced by its estimate

W̃x =
1

m

m
∑

k=1

xkx
′

k =
1

m
XX ′,

where xk are the vector measurements, assumed to be independent, and X is the n-by-m
matrix with columns xk. Then σi are the singular numbers of X/sqrt(m), and vi are the
corresponding singular vectors. Thus, there is no need to solve an eigenvalue problem for
an n-by-n matrix W̃x: instead, eigenmodes of the m-by-m matrix X ′X are to be found,
where m ≪ n.

POD for dynamical systems

Application of POD to dynamical system model reduction calls for using system state
response in place of data vectors xk. In the standard version, xk = x(tk) are time samples
of the full state response, obtained, usually, via simulation. Alternatively, for LTI state
space models, the use of xk = (skIn − A)−1B is suggested. The resulting projection P is
used to generate a reduced model via a standard projection scheme.

There are several serious objections to the use of POD for model reduction.

(a) When generated by dynamical system equations, the samples xk = x(tk) or xk =
(skIn − A)−1B are unlikely to be statistically independent. Hence, the statistical
motivation does not really apply.

(b) Good fitting of the set {xk} by a low dimensional subspace does not mean good
dynamical system approximation.

(c) In general, good projections for model reduction are not necessarily orthogonal.
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Typically, an attempt to fix problems (a) and (b) leads to making W̃x an approxima-
tion of the controllability Gramian of the system. For example, a numerical integration
quadrature

∫

∞

0

h(θ)dθ ≈
m

∑

k=1

ρ2

kh(θk),

where ρk ≥ 0 are some coefficients, would lead to

xk = x(tk)ρk, tk = θk,

where x = x(t) is an approximation of zero input system response to initial condition
x(0) = B, or, alternatively, to

xk = (jωkIn − A)−1Bρk, ωk = θk.

An attempt to fix problem (c) leads to working with two matrices: W̃x defined as before,
and the dual W̃p defined by A′, C ′ replacing A, B. In any case, the whole approach
reduces to attempts to approximate the controllability and observability Gramians, and
encounters serious difficulty in establishing quality guarantees.

Despite the objections listed above, model reduction via POD is quite popular, since
the time domain samples xk = x(tk) are easy to obtain whenever a numerical simulator
for the system (linear or nonlinear) is available.

An example

Consider system

ẋ1 = −2x1 + f,

ẋ2 = −x2 + ax1,

where a > 3 is a parameter. Here

A =

[

−2 0
a −1

]

, B =

[

1
0

]

.

For the solution x = x(t) of system equations with x(0) = B, we have

W̄ (t) =

∫ T

0

x(t)x(t)′dt =

[

α(t) β(t)
β(t) γ(t)

]

,
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where α, β, γ are non-negative numbers such that α(t) > γ(t) for small t > 0, and α(t) <
γ(t) for large t > 0. Hence α(t0) = γ(t0) for some t0 > 0, which means that the dominant
normalized eigenvector V of W̄ (t0) is

V =
1√
2

[

1
1

]

.

Hence the projected system has an unstable pole

s = V ′AV =
a − 3

2
> 0.


