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Model reduction via moments matching1

This lecture investigates the use of interpolation, or moments matching, for model reduc-
tion.

7.1 Mathematics of moments matching

This section contains basic definitions and abstract algebraic results associated with mo-
ments matching.

7.1.1 Moments of analytical functions

Recall that a complex-valued function f : Ω 7→ C defined on an open subset Ω of the
complex plane is called analytical if it can be represented by the expansion

f(s) =

∞
∑

i=0

fi(s − s0)
i, (7.1)

exponentially converging in a neigborhood of every point s0 ∈ Ω. The number

fi = Mi = Mi(s0) = Mf
i (s0)

is called the i-th moment of f at s0. It is easy to see that

Mf
i (s0) = (i!)−1f (i)(s0)
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is a scaled i-th derivative of f at s0.
Rational functions are analytical on the complement of the set of their poles. The

i-th moment of f(s) = C(sI − A)−1B at s = s0 equals C(s0I − A)−i−1B. Elementary
functions, such as f(s) = exp(s), f(s) = sin(s), f(s) = log(s) etc., are analytical on the
open sets on which they can be defined as continuous functions (so that f(s) =

√

s(s − 1)
cannot be made analytical on C, but, with a right definition, is analytical on C without
the real axis interval [0, 1]. Compositions of analytical functions are analytical. Not every
“simple” continuous function is analytical: for example, f(s) = Re(s) is not.

7.1.2 Moments matching as a model reduction algorithm

One common formulation of the moments matching problem can be introduced as follows:
given a positive integer n, a sequence of complex numbers (sk)

d
k=1, a sequence of positive

integers (mk)
d
k=1, and a function f which is analytical in a neighorhood of points (sk)

d
k=1,

find a strictly proper real rational function f̂(s) = p(s)/q(s) of degree n with no poles at
(sk)

d
k=1, such that

f̂ (i)(sk) = f (i)(sk) for 1 ≤ k ≤ d, 0 ≤ i < mk. (7.2)

Since a strictly proper transfer function of order n is defined by 2n independent real
parameters, it will be natural to assume that

2n =

d
∑

k=1

mk, (7.3)

to make the number of parameters equal to the number of equations.
When f is a transfers function of a large (or infinite) order system, the solution f̂

of the moments matching problem, with sk = ±jωk chosen on the imaginary axis, is
frequently used as a reduced order model of f . This leads to computationally inexpensive
algorithms which provide high accuracy in the frequency regions which are located near
the matching points ωk. On the other hand, the approximation quality tends to be poor
away from ωk. Worse, f̂ can be unstable when f is stable.

In studying moments matching as a method od model reduction, this lecture will
concentrate on the following questions.

(a) Which conditions guarantee existence, uniqueness and continuous dependence of f̂
on f?

(b) What are numerically robust ways of calculating f̂?
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(c) Which general accuracy guarantees can be proven for f̂ as an approximation of f?

Question (a) can be answered in algebraic terms. A projection method based on
Theorem 4.2 (Lecture 4) delivers numerically robust calculations for f̂ which avoids direct
calculation of the moments of f (those moments can be very large while the final answer
may be scaled well). Most results related to question (c) will be negaite examples.

7.1.3 Moments matching problem as a system of linear equations

Assume for simplicity that mk = 1 for all k (while sk 6= si for k 6= i), and hence d = 2n.
Then the moments matching condition can be written simply as

p(sk)

q(sk)
= f(sk),

or, equivalently (since q(sk) 6= 0),

p(sk) = f(sk)q(sk).

The last equation is linear with respect to the coefficients of p, q. Representing p, q as

p(s) =

n−1
∑

i=0

pis
i, q(s) = sn +

n−1
∑

i=0

qis
i,

the equations can be written as az = b, where

a =











1 s1 . . . sn−1
1 h1 h1s1 . . . h1s

n−1
1

1 s2 . . . sn−1
2 h2 h2s2 . . . h2s

n−1
2

...
...

1 sd . . . sn−1
d hd hdsd . . . hds

n−1
d











, b = −











h1s
n
1

h2s
n
2

...
hds

n
d











,

hk = −f(sk).
Thus, the original problem is reduced to solving a linear system with 2n variables

and 2n unknowns. After a solution z of az = b is found, it can be converted into the
polynomials p and q. However, these p, q will solve the original matching problem only if
q(sk) 6= 0 for all k, which is not quaranteed automatically under the assumptions made.

For example, when n = 1, d = 2, s1 = 0, s2 = 1, f(s1) = 0, f(s2) = 1, the resulting
linear equations take the form

p0 = 0, p0 = q0 + 1,



4

which has a unique solution p0 = 0, q0 = −1. This solution of the system of linear
equations does not lead, however, to a solution of the moments matching problem, since
the resulting polynomial q(s) = s − 1 is zero at s = s2 = 1.

A similar reduction to a system of linear equations can be made when mk > 1 for
some k.

7.1.4 Moments matching with a fixed denominator

To understand the original moments matching problem better, it is beneficial to consider
a different setup, in which a polynomial q̃, such that deg(q̃) = 2n and q̃(sk) 6= 0 for all
k = 1, . . . , d, is given, and one has to find a polynomial p̃ of degree not larger than 2n− 1
such that the first mk moments of p̃(s)/q̃(s) match the first mk moments of f(s) at s = sk

for all k = 1, . . . , d. As follows from Theorem 7.1 below, such moments matching problem
always has a unique solution p̃.

Theorem 7.1 Let s1, . . . , sd be different complex numbers. Let m1, . . . , md be positive
integers. Let fk,i, where the integer indexes k, i satisfy 1 ≤ k ≤ d and 0 ≤ i < mk, be
given complex numbers. Let q̃ be a polynomial of degree

N =

d
∑

k=1

mk

such that q̃(sk) 6= 0 for all k = 1, . . . , d. Then there exists a unique polynomial p̃ of
degree N − 1 such that the i-th moment of f̃(s) = p̃(s)/q̃(s) at s = sk equals fk,i for
1 ≤ k ≤ d and 0 ≤ i < mk; Moreover, if, in addition, q̃ has real coefficients and for every
k ∈ {1, . . . , d} there exists r ∈ {1, . . . , d} such that sk = s̄r, mk = mr, and fk,i = f̄r,i for
0 ≤ i < mk, then the polynomial p̃ has real coefficients.

Proof Consider the function H which maps the complex N -vector of coefficients of p̃
into the N -vector of the moments of f̃ = p̃/q̃ at points sk (a total of mk moments at each
sk). This is a linear map H : CN 7→ CN . Note that if all the moments are equal to zero
then p̃ has a root of multiplicity mk at each sk, i.e. a total of N roots, which implies that
p̃ = 0, since the degree of p̃ is less than N . Hence H is a one-to-one map, and a (complex)
solution of the moments matching problem exists and is unique. To show that, under the
additional assumptions, p̃ has real coefficients, note that

p(s)

q(s)
= O((s − sk)

mk) +

mk−1
∑

i=0

fki(s − sk)
i
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implies

p∇(s)

q∇(s)
= O((s − s̄k)

mk) +

mk−1
∑

i=0

f̄ki(s − s̄k)
i,

where α∇ denotes the polynomial with the coefficients which are complex conjugates of the
coefficients of polynomial α. Since q̃ has real coefficients, this means that the polynomial
p̃∇ is also a solution of the same moments matching problem. Since the solution is unique,
p̃ must have real coefficients.

7.1.5 Homogeneous moments matching

For the original moments matching problem described in subsection 7.1.2, select a real
polynomial q̃ of degree 2n such that q̃(sk) 6= 0 for all k = 1, . . . , d, and find the polynomial
p̃ which solves the fixed denominator moments matching problem as in Theorem 7.1 with
fki being the i-th moment of f at sk. Note that if transfer function f has real coefficient,
so does the resulting polynomial q̃.

The first mk moments of f and f̃ at sk are identical. Hence, a strictly proper rational
function f̂ = p/q of degree n, such that q(sk) 6= 0 for all k, solves the original moments
matching problem if and only if the polynomial δ = pq̃ − qp̃ is divisible by

θ = θ(s) = Πd
k=1(s − sk)

mk .

The task of finding polynomials polynomials p0, q0 such that

q0 6≡ 0, deg(q0) ≤ n, deg(p0) < n, p0q̃ − q0p̃
... θ, (7.4)

where α
... β means that division of polynomial α by polynomial β yields a zero reminder,

is of an independent interest, and will be called the auxiliary homogeneous moments
matching problem associated with the original setup.

It turns out that the homogeneous moments matching problem always has a unique
solution.

Theorem 7.2 Let θ be a polynomial of degree 2n. Let q̃ be a polynomial which has no
common roots with θ. Then the homogeneous moments matching problem (7.4) has a
solution p0, q0. If θ, p̃ and q̃ have real coefficients then p0, q0 can also be chosen to be real.
Moreover, if p∗0, q

∗

0 is another such solution then

f0(s) =
p0(s)

q0(s)
= f ∗

0 (s) =
p∗0(s)

q∗0(s)

for almost all s.
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Proof Consider the linear map H from the (2n + 1)-vector of coefficients of polynomials
p, q, where deg(p) < n and deg(q) ≤ n, into the (2n)-vector of the coefficients of the
reminder of the division of pq̃ − qp̃ by θ. This is a linear map H : C2n+1 7→ C2n, and
hence Hz = 0 for some z = (p0, q0) 6= 0. Note that q0 ≡ 0 would imply that p0q̃ is divisible
by θ, which is only possible when q0 ≡ 0. Hence q0 6≡ 0, which proves the existence of the
desired p0, q0.

To show existence of a real solution, note that, when p̃ and q̃ are real, the polynomials
defined by the real and imaginary parts of p0, q0 satisfy the conditions from (7.4), except,
possibly, the first one. Since either real or imaginary part of q0 is not identically zero,
existence of a non-zero real solution of (7.4) follows.

Finally, if p∗0, q
∗

0 is such solution then

q̃(p0q
∗

0 − q0p
∗

0)
... θ,

which implies δ = p0q
∗

0 − q0p
∗

0 = 0 since deg(δ) < 2n = deg(θ) and θ and q̃ have no
common roots.

7.1.6 Existence and uniqueness of a moments matching solution

Existence and uniqueness of a solution in the original moments matching problem from
subsection 7.1.2 can be established in terms of a solution p̃, q̃ of the homogeneous moments
matching problem.

Theorem 7.3 Let p0, q0 be the polynomials defined in Theorem 7.2.

(a) If there exists k ∈ {1, . . . , d} such that sk is a root of both q0 and p0 of multiplicity
at least r > 0, but the multiplicity of sk as a root of q̃p0 − p̃q0 is less that r + mk,
then the original moments matching problem has no solution;

(b) If deg(p0) ≥ deg(q0) then the original moments matching problem has no solution;

(c) If neither (a) nor (b) take place then the original moments matching problem has
a solution. All such solutions are related to solutions of the system of 2n linear
equations with 2n variables x1, . . . , x2n, resulting from the polynomial relation

q̃p − p̃q
... θ, (7.5)

where

q(s) = sn +
n

∑

k=1

xks
k−1, p(s) =

2n
∑

k=n+1

xks
n+1−k.



7

The linear system of equations has a unique solution if and only if deg(q0) = n and
p0, q0 have no common roots.

Proof Let h, h0 be the greatest common divisors of the pairs (p, q) and (p0, q0) respec-
tively, normalized in such a way that the highest powers of s enter q/h and q0/h0 with
coefficient 1. Then, since p/q = p0/q0 almost everywhere, p/h = p0/h0 and q/h = q0/h0.

To prove (a), note that deg(p) < deg(q) implies deg(q0) > deg(p0).
To prove (b), note that

(q̃p − p̃q)h0 = (q̃p0 − p̃q0)h.

Since sk is not a zero of h (because it is not a zero of q), the multiplicity of sk as a root
of q̃p0 − p̃q0 is at least r + mk.

To prove the existence in (c), let r = n − deg(q0/h0), take a real number σ > 0 which
does not belong to the set {−s1, . . . ,−sd}, and define p, q by

p(s) = (s + σ)rp0(s)/h0(s), q(s) = (s + σ)r(q0(s)/h0(s)).

Since there is a continuum of possible σ, the solution is not unique when r > 0.

7.2 Numerical algorithms for moments matching

This section describes a projection-based approach to numerically robust calculation of
solutions of moments matching problems.

7.2.1 An example

While Theorem 7.3 provides important fundamental insight into the inner workings of
moments matching, solving the linear system of 2n equations with 2n variables from (c)
is usually not a viable option. The following example is aimed at demonstrating this.

Consider the task of finding an n-th strictly proper transfer function

f̂(s) =
p0 + p1s + · · ·+ pn−1s

n−1

q0 + q1s + · · · + qn−1sn−1 + sn

which matches the first 2n moments of f(s) = (1 + s)N at s = 0, where N ≫ 2n. The
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equations resulting from (7.5) will have the form ax = b, where

a =



































1 0 0 0 −1 0 0 0
h1 1 0 0 0 −1 0 0
h2 h1 1 0 0 0 −1 0

. . .
. . .

hn−1 hn−2 hn−3 1 0 0 0 −1
hn hn−1 hn−2 h1 0 0 0 0

hn+1 hn hn−1 h2 0 0 0 0
hn+2 hn+1 hn h3 0 0 0 0

. . .
. . .

h2n−1 h2n−2 h2n−3 hn 0 0 0 0



































, b =



































0
0
...
0
1
0
0
...
0
1



































,

where hk are the binomial coefficients

(1 + s)N = 1 + h1s + h2s
2 + . . . .

According to Theorem 7.3, matrix a is invertible when N ≥ 2n− 1. However, the largest
singular number of a is at least as large as h2n−1, and the smallest singular number of a
is not larger than 1. Hence the conditioning number of a (a numerical measure of how
close a is to being singular) is at least

h2n−1 =
N(N − 1)(N − 2) · · · · · (N − 2n + 2)

1 · 2 · 3 · · · · · (2n − 1)
,

which is very large when N ≫ n ≫ 1.

7.2.2 Krylov subspaces and the Arnoldi method

Theorem 4.2 from Lecture 4 can be used to obtain the solution of the moments matching
problem more efficiently.

Let
f(s) = C(sIN − A)−1B

be a state space model of the original transfer function, where A is an N -by-N matrix.
According to Theorem 4.2, if matrices U, V of dimensions n-by-N and N -by-n respectively
are such that for every k ∈ {1, . . . , d} the vectors (skI −A)−iB are linear combinations of
the columns of V for i = 1, . . . , ik, the row vectors C(skI − A)−r are linear combinations
of the rows of U for r = 1, . . . , rk, where ik + rk ≥ mk and UV = In, then the transfer
function

f̂(s) = CV (sIn − UAV )−1UB
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solves the moments matching problem.
Here the subspace of N -dimensional column vectors spanned by (skI − A)−iB with

k = 1, . . . , d, i = 1, . . . , ik, and the subspace of N -dimensional row vectors spanned by
C(skI − A)−r with k = 1, . . . , d, r = 1, . . . , rk, are called the Krylov subspaces. The
moments matching problem can be solved. When the pair (A, B) is controllable, the pair
(C, A) is observable, and

d
∑

k=1

ik =

d
∑

k=1

rk = n ≤ N,

the Krylov subspaces have dimension n. Hence, solving the moments matching problem
reduces to finding matrices U0, V0 columns of which form bases in the Krylov subspaces,
verifying that U0V0 is invertible, and then forming U, V by re-normalizing U and V , as in

U = (U0V0)
−1U0, V0 = V.

In practice, forming the column vectors (skI − A)−iB with large i explicitly leads to
poor conditioning of U0V0. Better results are achieved by applying the Arnoldi method,
based on forming a recurrent sequence of vectors B1, B2, . . . , where B1 = (skI − A)−1B,
and Bi+1 is the normalized orthogonal complement of (skI − A)−1Bi to B1, . . . , Bi.


