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This lecture discusses optimal approximation of transfer functions by lower order rational
transfer functions with a given set of poles. While the technique does not really qualify
as “model reduction”, it can be quite useful as a preliminary step in a model reduction
algorithm for large scale LTI models.

8.1 Linear expansions of functions

In this section we recall the basic definitions associated with orthogonal decompositions.

8.1.1 Linear decompositions in function spaces

A common way of representing high-dimensional (or infinite dimensional) vector data,
such as signals, images, or other functions, is linear decomposition into elements of a
given set of “simple”, or basis functions. For example, Fourier transforms of smooth
functions f = f(t) of time t ∈ R which are decaying fast enough as t → ±∞ can be
viewed as a way of representing f as integrals of harmonic oscillations fω(t) = cos(ωt)
and gω(t) = sin(ωt), according to

f(t) =
1

2π

∫ ∞

−∞

ejωtf̃(jω)dω

=
1

π

∫ ∞

0

cos(ωt)fr(ω)dω − 1

π

∫ ∞

0

sin(ωt)fi(ω)dω,
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where fr(ω) and fi(ω) are the real and imaginary parts of the Fourier transform

f̃(jω) =

∫ ∞

−∞

e−jωtf(t)dt

of f = f(t).
Another such example is representation of almost periodic continuous signals f = f(t),

i.e. functions f : R 7→ R such that

sup
t∈R

|f(t)| <∞,

and
inf
T≥1

sup
t∈R

|f(t) − f(t− T )| = 0,

as sums

f(t) =
∞
∑

k=1

fke
jωkt, where

∞
∑

k=1

|fk| <∞,

of a countable number of harmonic oscillations.

8.1.2 Orthonormal families of functions

While the bases of harmonic oscillations are working well in many applications, other
bases produce poor results. For example, linear combinations of functions gk(t) = t2k

(which includes all polynomials of t2) can be used to approximate uniformly arbitrary
continuous functions g = g(t) of time t ∈ [0, 1]. However, trying to represent a “nice”
function f(t) = (1 + at2)2, where a ≥ 0 is a parameter, as a linear expansion

f(t) =

∞
∑

k=0

fkgk(t) =

∞
∑

k=0

fkt
2k, t ∈ [0, 1],

yields fk = (−a)k, which is not good when a ≫ 1, as the resulting representation of
f(t) involves relative accuracy and conditioning loss associated with obtaining a small
difference in substracting one large number from another.

To avoid such possibility, it is usually a good idea to use the so-called orthonormal
bases. In general, orthonormality is defined with respect to a scalar product, which is a
function σ : V × V 7→ C defined on the set V × V of pairs (v1, v2) of functions from a
certain class (closed with respect to the operations of addition and scaling), satisfying the
following conditions:
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(a) σ(v1, v2) = σ(v2, v1) for all v1, v2 ∈ V (symmetry);

(b) σ(v, c1v1 + c2v2) = c1σ(v, v1) + c2σ(v, v2) for all v, v1, v2 ∈ V, c1, c2 ∈ R (linearity);

(c) σ(v, v) > 0 for all v ∈ V, v 6 0 (positivity).

A family of functions gi ∈ V is called orthonormal with respect to σ if

σ(gi, gk) = δik =

{

1, i = k,
0, i 6= k.

For example, in the case of working with functions of a scalar variable θ ∈ R (where, in
system applications, θ could be “time” t or “frequency” ω), the scalar product is typically
defined by

σ(v1, v2) =

∫

R
v1(θ)

′v2(θ)ρ(θ)dt,

where ρ : R 7→ [0,∞) is a given weight function. The resulting orthonormality condition
becomes

∫

R
gi(θ)

′gk(t)dt = δik.

However, scalar products are not always defined as integrals. For example, when V is
the class of all almost periodic functions (defined earlier in this lecture), the typical scalar
product is defined by

σ(v1, v2) = lim
T→∞

1

T

∫ T

0

v1(t)
′v2(t)dt.

It is interesting to note that the set of all exponents gω(t) = ejωt is an uncountable
orthonormal family with respect to σ.

8.1.3 Orthonormal decompositions

The following classical theorem states the benefits of orthonormality, which includes cer-
tain optimality of linear expansions, a-priori estimates for the amplitudes of expansion
coefficients, and explicit formulae for their calculation.

Theorem 8.1 Let {gk}Nk=0 be a family of functions in V which is orthonormal with respect
to a scalar product σ : V × V 7→ R. For every v ∈ V, define

v̂ =
N
∑

k=0

vkgk, where vk = σ(gk, v).

Then
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(a) g = v̂ is the argument of minimum of σ(g − v, g − v) over the set of all linear
combinations g of gk;

(b) the sum of squares of vk does not exceed σ(v, v).

The proof of the theorem is omitted as being standard. The function v̂ is considered
as the optimal (with respect to s) approximation of v by linear combinations of functions
gk. Note how the the choice of the scalar product σ is related to performance of optimal
approximation: the quality guarantee is given in terms of the norm ‖v‖σ = σ(v, v)1/2

defined by σ. In particular, it is important to use scalar products which are adapted to a
particular application.

For example, for across-the-spectrum approximation of strictly proper transfer func-
tions, the standard scalar product

σ(G1, G2) =
1

π

∫ ∞

0

G1(jω)′G2(jω)dω

may be appropriate. In contrast, for approximation of proper transfer functions which
should be best in the low frequency region |ω| < ω0, the scalar product

σ(G1, G2) =
1

π

∫ ∞

0

G1(jω)′G2(jω)
dω

ω2 + ω2
0

is likely to work better.

8.1.4 Orthogonalization

In many applications it is natural to start with a sequence of functions w0, w1, w2, . . .
which are not orthonormal with respect to the desired scalar product σ. For example,
when approximating functions v : [0, 1] 7→ R by low degree polynomials, it is reasonable
to use

σ(v1, v2) =

∫ 1

0

v1(t)v2(t)dt, wk(t) = tk.

To make finding of best least squares approximations efficient and robust, it is desirable
to orthogonalize the original sequence w0, w1, w2, . . . , by finding an orthonormal family
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g0, g1, g2, . . . such that

g0 = c00w0,

g1 = c10w0 + c11w1,
...

gk =

k
∑

i=0

ckiwi,

...

This can be achieved by using the Gram-Schmidt orthogonalization procedure

g0 = σ(w0, w0)
−1/2w0,

∆k = wk+1 −
k
∑

i=0

σ(gi, wk+1)gi,

gk+1 = σ(∆k,∆k)
−1/2∆k,

The procedure (which is implemented in MATLAB as the Cholesky decomposition chol.m)
is well defined when functions w0, . . . , wn are linearly independent for all n, i.e. when the
only identically zero linear combination of wi is the one with zero coefficients.

For example, Gram-Schmidt orthogonalization of wk(t) = tk with respect to the scalar
product

σ(v1, v2) =

∫ 1

0

v1(t)v2(t)dt

yields
g0(t) ≡ 1, g1(t) =

√
3(2t− 1), . . .

8.2 Orthonormal expansions of stable transfer functions

The objective of this section is to introduce convenient orthonormal bases of elementary
transfer functions for accurate and robust approximation of complex LTI systems.

8.2.1 Scalar products for transfer functions

The standard scalar product for the class of strictly proper real rational transfer functions
without poles on the imaginary axis is defined by

σ(G1, G2) = σ1(G1, G2) =
1

π

∫ ∞

0

G1(jω)′G2(jω)dω =

∫ ∞

−∞

g1(t)
′g2(t)dt,
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where gi are the stable (but not necessarily causal) impulse responses of Gi. For example,

σ1

(

1

s+ 1
,

1

s+ a

)

=







1/(1 + a), a > 0,
0, a < 0,
?, a = 0,

where “?” means “not defined”.
Alternative scalar products are typically defined by

σ(G1, G2) = σψ(G1, G2) =
1

π

∫ ∞

0

G1(jω)′G2(jω)|ψ(jω)|2dω,

where ψ 6≡ 0 is a given proper rational transfer function without poles on the imaginary
axis.

For such scalar products, verification of orthogonality can be facilitated by the follow-
ing observation.

Lemma 8.1 If H is a stable transfer function of relative degree larger than 1 then

1

π

∫ ∞

0

H(jω)dω = 0.

For example, using the lemma with

H(s) =
1

(s+ 1)(−s− 2)

yields

σ1

(

1

s+ 1
,

1

s− 2

)

=
1

π

∫ ∞

0

1

(jω + 1)(−jω − 2)
dω = 0.

8.2.2 Canonical orthonormal families of stable transfer functions

In this subsection we construct an important parameterized orthonormal family in the set
of strictly proper stable transfer functions. This family will be refered to as the canonical
one.

Theorem 8.2 Let ak > 0 for k = 0, 1, 2, . . . be a sequence of positive numbers. Then the
sequence of transfer functions

θ0 =

√
2a0

s+ a0

, θk =

√
2ak

s+ ak

k−1
∏

i=0

s− ai
s+ ai

is orthonormal with respect to the standard scalar product.
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Proof Use the lemma to establish that σ1(θi, θk) = 0 for i 6= k. To check normalization,
note first that

∣

∣

∣

∣

s− ai
s+ ai

∣

∣

∣

∣

= 1 for s = jω.

Hence

σ1(θk, θk) =
1

π

∫ ∞

0

2akdω

|jω + ak|2
= 2ak

∫ ∞

0

e−2aktdt = 1.

When all numbers ak are different, the sequence θk from the theorem is the result of
Gram-Schmidt orthogonalization of the sequence

wk(s) =
1

s+ ak
.

In general, θk can be interpreted as the result of orthogonalizing the sequence

wk(s) =
k
∏

i=0

1

s+ ai
.

It is important to know when functions θk actually form a basis in the set of all stable
transfer functions with square integrable impulse responses. The following result, stated
without a proof here, answers this question.

Theorem 8.3 The family {θk}∞k=0 is a basis in the set of stable transfer functions if and
only if

∞
∑

k=0

ak = ∞.

8.2.3 Explicit formulae for canonical decompositions

Let us refer to the optimal linear decomposition

G(s) =

N
∑

k=0

gkθk(s),

where {θk}∞k=0 is a canonical basis defined by a non-summable sequence of positive num-
bers ak, as the canonical one.

Though the coefficients gk = σ1(θk, G) can be defined as the corresponding integrals,
actually computing them according to the integration formula would be extremely ineffi-
cient when a state space model of G is available.

The following theorem provides a more efficient approach.
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Theorem 8.4 Let {ak}∞k=0 be a non-summable sequence of positive numbers. let {θk}∞k=0

be the corresponding canonical basis in the space of all stable strictly proper transfer func-
tions. Then the coefficients gk of the canonical decomposition

G(s) ≈
N
∑

k=0

gkθk(s),

are defined by the recursion

G0(s) = G(s),

gk =
√

2akGk(ak),

Gk+1(s) =
s+ ak
s− ak

(

Gk(s) − gk
2ak
s+ ak

)

.

Moreover, if G(s) = C(sI − A)−1B then Gk, gk can be computed recursively by

B0 = B,

Fk = (akI − A)−1Bk,

gk = CFk,

Bk+1 = −(akI + A)Fk.

The proof of the theorem is by a straightforward inspection. Note that the sequence
of vectors Bk is defined by the recursion

Bk+1 = ÃkBk, Ãk = −(akI + A)(akI − A)−1.

If A is a Hurwitz matrix satisfying Lyapunov inequality

PA+ A′P ≤ 0,

where P = P ′ > 0, then Ãk satisfies the discrete time Lyapunov inequality

P ≥ Ã′
kPÃk.

Hence B′
kPBk is monotonically non-increasing, and vector Bk remains bounded as k → ∞.
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8.2.4 Error of cannonical optimal approximations

The quality of canonical optimal approximations

G(s) ≈ ĜN(s) =
N
∑

k=0

gkθk(s)

depends significantly on the smoothness of G(jω) as a function of ω. The following upper
bound for the approximation error is available when ak ≡ a > 0 is a constant sequence.

Theorem 8.5 Assume that the 2π-periodic function

φ(τ) =
a+ j tan(τ/2)

a
G(ja tan(τ/2))

is q times differentiable, and its q-th derivative φ(q) satisfies

Mq =
1

2π

∫ π

−π

|φ(q)(τ)|2dτ <∞.

Then
‖G− ĜN‖∞ ≤ (2q − 1)−0.5M0.5

q N0.5−q.

Proof The standard linear fractional substitution

z =
s+ a

s− a
= e−jτ , s = a

z + 1

z − 1
= jω = j tan(τ/2),

transforms the orthonormal decomposition

G(s) = G(jω) =

√
2a

s+ a

∞
∑

k=0

gk

(

s− a

s+ a

)k

into

G(j tan(τ/2)) =
a

a + j tan(τ/2)
φ(τ) =

a

a + j tan(τ/2)

∞
∑

k=0

φke
jkτ ,

where

φk =

√

2

a
gk.

By construction,
‖G− ĜN‖∞ ≤ ǫN = max

τ
|φ(τ) − φ̂N(τ)|,
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where

φ̂N(τ) =
N
∑

k=0

φke
jkτ .

To give an upper bound for ǫN , note that

φ(q)(τ) =

∞
∑

k=0

(jk)qejkτ ,

and hence

(jk)qφk =

∫ π

−π

e−jkτφ(q)(τ)dτ,

which, by the othonormality of the complex exponents ejkτ , implies

∞
∑

k=0

k2q|φk|2 ≤Mq.

Combining this with the fact that

∞
∑

k=N+1

k−2q ≤
∫ ∞

N

x−2qdx =
1

(2q − 1)N2q−1
,

we get

ǫN ≤
∞
∑

k=N+1

|φk|

=

∞
∑

k=N+1

(kqφk)(k
−q)

≤
(

∞
∑

k=N+1

k2qφ2
k

)1/2( ∞
∑

k=N+1

k−2q

)1/2

≤ M0.5
q (2q − 1)−0.5N0.5−q.

Theorem 8.5 is frequently used to get a rough understanding of asymptic behavior of
singular numbers of a given distributed LTI system G = G(s). Since the k-th singular
number is a lower bound of H-Infinity error of approximating G by a system of order less
than k, the k-th singular will decrease at least as fast as ck0.5−q, where q is the number
square integrable derivatives of the corresponding φ function.


