
Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science

6.242, Fall 2004: MODEL REDUCTION ∗

Model reduction via convex optimization1

This lecture discusses methods for deriving reduced LTI models by solving a convex
optimization problem.

9.1 Convex optimization: an introduction

This section presents basic definitions and elementary results of convex optimization.

9.1.1 A hierarchy of optimization setups

Roughly speaking, an “optimization problem” is the task of finding an element x = xo

of a given set X for which the value Φ(x) of a given function Φ : X 7→ R is minimal.
Alternatively, the objective could be to find an element xγ ∈ X such that Φ(xγh) < γ,
where γ ∈ R is a given threshold, or to give evidence to non-existence of such xγ does
not exist.

Among the most familiar optimization problems is the so-called linear-quadratic opti-
mization, which is essentially the task of minimizing a quadratic form

Φ(x) = x′Qx − 2F ′x,

where Q = Q′ > 0 is a given real symmetric positive definite n-by-n matrix, and F ∈ Rn

is a given column n-vector, over X = {x} = Rn. The minimum of −F ′Q−1F is achieved
at x = xo = Q−1F .
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Another optimization setup exploited earlier in these lectures is the “matrix rank
reduction problem”, which is the task of finding a matrix x ∈ Rn×m of rank strictly less
than a given number r such that ‖x−M‖ is minimal, where M ∈ Rn×m is given, and ‖∆‖
denotes the largest singular value (operator norm) of ∆. The solution of the matrix rank
reduction problem, though not as simple as that of the linear quadratic optimization, is
also quite explicit in terms of standard linear algebra operations.

Convex optimization is another example of an optimization task which, in principle,
can be solved efficiently, though the convex optimization algorithms are usually more
complicated than those for numerical linear algebra. While a typical model reduction is
not given in the form of a convex optimization, there are some ways of modifying the
problem to fit within the convex optimization framework.

9.1.2 Convex Sets

A subset Ω of V = Rn is called convex if

cv1 + (1 − c)v2 ∈ Ω whenever v1, v2 ∈ Ω, c ∈ [0, 1].

In other words, a set is convex whenever the line segment connecting any two points of
Ω lies completely within Ω.

In many applications, the elements of Ω are, formally speaking, not vectors but other
mathematical objects, such as matrices, polynomials, etc. What matters, however, is
that Ω is a subset of a set V such that a one-to-one correspondence between Rn and V
is established for some n. We will refer to V as a (real finite dimensional) vector space,
while keeping in mind that V is the same as Rn for some n. For example, the set Sn

of all symmetric n- by-n matrices is a vector space, because of the natural one-to-one
correspondence between Sn and Rn(n+1)/2.

Using this definition directly, in some situations it would be rather difficult to check
whether a given set is convex. The following simple statement is of a great help.

Lemma 9.1 Let K be a set of affine functionals on V = Rn, i.e. elements f ∈ K are
functions f : V → R such that

f(cv1 + (1 − c)v2) = cv1 + (1 − c)v2 ∀ c ∈ R, v1, v2 ∈ V.

Then the subset Ω of V defined by

Ω = {v ∈ V : f(v) ≥ 0 ∀ f ∈ K}

is convex.
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In other word, any set defined by linear inequalities is convex.

Proof Let v1, v2 ∈ Ω and c ∈ [0, 1]. Since f(v1) ≥ 0 and f(v2) ≥ 0 for all f ∈ K, and
c ≥ 0 and 1 − c ≥ 0, we conclude that

f(cv1 + (1 − c)v2) = cf(v1) + (1 − c)f(v2) ≥ 0

for all f ∈ K. Hence cv1 + (1 − c)v2 ∈ K.

Here is an example of how Lemma 9.1 can be used. Let us prove that the subset Ω = Sn
+

of the set V = Sn of symmetric n-by-n matrices, consisting of all positive semidefinite
matrices, is convex.

Note that doing this via the “nonnegative eigenvalues” definition of positive semidef-
initeness would be difficult. Luckily, there is another definition: a matrix M ∈ Sn

+ is
positive semidefinite if and only if x′Mx ≥ 0 for all x ∈ Cn. Note that any x ∈ Cn defines
an affine (actually, a linear) functional f = fx : Sn → R according to

fx(M) = x′Mx.

Hence, Sn
+ is a subset of Sn defined by some (infinite) set of linear inequalities. According

to Lemma 9.1, Sn
+ is a convex set.

9.1.3 Convex Functions

Let f : Ω → R be a function defined on a subset Ω ⊂ V = Rn. Function f is called
convex if the set

Γ+
f = {(v, y) ∈ Ω × R : y ≥ f(v)},

is a convex subset of V × R.
According to this definition, f : Ω → R is convex if and only if the following two

conditions hold:

(a) Ω is convex;

(b) the inequality
f(cv1 + (1 − c)v2) ≤ cf(v1) + (1 − c)f(v2)

holds for all v1, v2 ∈ V , c ∈ [0, 1].

Note that condition (b) has the meaning that any segment connecting two points on the
graph of f lies em above the graph of f .

The definition of a convex function does not help much with proving that a given func-
tion is convex. The following three statements are of great help in establishing convexity
of functions.
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Let us call a function f : Ω → R defined on a subset Ω of Rn twice differentiable at
a point v0 ∈ Ω if there exists a symmetric matrix W ∈ Sn

R and a row vector p such that

f(v) − f(v0) − p(v − v0) − 0.5(v − v0)
′W (v − v0)

‖v − v0‖2
→ 0 as v → v0, v ∈ Ω,

in which case p = f ′(v0) is called the first derivative of f at v0 and W = f ′′(v0) is called
the second derivative of f at v0.

Lemma 9.2 Let Ω ⊂ Rn be a convex subset of Rn. Let f : Ω → R be a continuous
function which is twice differentiable on the interior of Ω (assumed to be not empty).
Then f is convex on Ω if and only if f ′′(ω) positive semidefinite in the interior of Ω.

For example, let Ω be the positive quadrant in R2, i.e. the set of vectors [x; y] ∈ R2

with positive components x > 0, y > 0. Obviously Ω is convex. Let the function
f : Ω → R be defined by f(x, y) = 1/xy. According to Lemma 9.2, f is convex, because
the second derivative

W (x, y) =

[

d2f/dx2 d2f/dxdy
d2f/dydx d2f/dy2

]

=

[

2/x3y 1/x2y2

1/x2y2 2/xy3

]

is positive definite on Ω.

Lemma 9.3 Let Ω ⊂ V be a convex subset of V = Rn. Let P be a set of affine functionals
on V such that

f(v) = sup
p∈P

p(v) < ∞ ∀ v ∈ Ω.

Then f : Ω → R is a convex function.

To give an example of how Lemma 9.3 can be used, let us prove that the function
f : Cn,m → R defined by f(M) = σmax(M) is convex, where Cn,m denotes the set
of all n-by-m matrices with complex entries. Though Ω = Cn,m is in a simple one-to-
one correspondence with R2nm, using Lemma 9.2 to prove convexity of f is essentially
impossible: f is not differentiable at many points, and its second derivative, where exists,
is cumbersome to calculate. Luckily, from linear algebra we know that

σmax(M) = max{Re(p′Mq) : p ∈ Cn, q ∈ Cm, ‖p‖ = ‖q‖ = 1}.

Since each individual function M 7→ Re(p′Mq) is linear, Lemma 9.3 implies that f is
convex.

In addition to Lemma 9.2 and Lemma 9.3, which help establishing convexity “from
scratch”, the following statements can be used to derive convexity of one function from
convexity of other functions.
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Lemma 9.4 Let V be a vector space, Ω ⊂ V .

(a) If f : Ω → R and g : Ω → R are convex functions then h : Ω → R defined by
h(v) = f(v) + g(v) is convex as well.

(b) If f : Ω → R is a convex function and c > 0 is a positive real number then
h : Ω → R defined by h(v) = cf(v) is convex.

(c) If f : Ω → R is a convex function, U is a vector space, and L : U → V is an affine
function, i.e.

L(cu1 + (1 − c)u2) = cL(u1) + (1 − c)L(u2) ∀ c ∈ R, u1, u2 ∈ U,

then the set
L−1(Ω) = {u ∈ U : L(u) ∈ Ω}

is convex, and the function f ◦ L : L−1(Ω) → R defined by (f ◦ L)(u) = f(L(u)) is
convex.

For example, let g : S3

R → R be defined on symmetric 2-by-2 matrices by

g

([

x y
y z

])

= x2 + y2 + z2.

To prove that g is convex, note that g = f ◦L where L : S3 → R3 is the affine (actually,
linear) function defined by

L

([

x y
y z

])

=





x
y
z



 ,

and f : R3 → R is defined by

f









x
y
z







 = x2 + y2 + z2.

Lemma 9.2 can be used to establish convexity of f (the second derivative of f turns out
to be the identity matrix). According to Lemma 9.4, g is convex as well.
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9.1.4 Quasi-Convex Functions

Let Ω ⊂ V be a subset of a vector space. A function f : Ω → R is called quasi-convex if
its level sets

Ωγ = {v ∈ Ω : f(v) < γ}

are convex for all γ.
It is easy to prove that any convex function is quasi-convex. However, there are many

important quasi-convex functions which are not convex. For example, let Ω = {(x, y) :
x > 0, y > 0} be the positive quadrant in R2. The function f : Ω → R defined by
f(x, y) = −xy is not convex but quasi-convex.

A rather general definition leading to quasi-convex functions is given as follows.

Lemma 9.5 Let Ω ⊂ V be a subset of a vector space. Let P = {(p, q)} be a set of pairs
of affine functionals p, q : Ω → R such that

(a) inequality p(v) ≥ 0 holds for all v ∈ Ω, (p, q) ∈ P ;

(b) for any v ∈ Ω there exists (p, q) ∈ P such that p(v) > 0;

(c) for every v ∈ Ω there exists λ ∈ R such that λp(v) ≥ q(v) for all (p, q ∈ P .

Then the function f : Ω → R defined by

f(v) = inf{λ : λp(v) ≥ q(v) ∀ (p, q) ∈ P} (9.1)

is quasi-convex.

For example, the largest generalized eigenvalue function f(v) = λmax(α, β) defined
on the set Ω = {v} of pairs v = (α, β) of matrices α, β ∈ Sn such that α is positive
semidefinite and α 6= 0, is quasi-convex. To prove this, recall that

λmax(α, β) = inf{λ : λx′αx ≥ x′βx ∀ x ∈ Cn}.

This is a representation of λmax in the form (9.1) with ((p, q) = (px, qx) defined by an
x ∈ Cn according to

px(v) = x′αx, qx(v) = x′βx where v = (α, β).

Since for any α ≥ 0, α > 0 there exists x ∈ C such that x′αx > 0, Lemma 9.5 implies
that λmax is quasi-concave on Ω.



7

9.2 Standard Convex Optimization Setups

There exists a variety of significantly different tasks commonly referred to as convex
optimization problems.

9.2.1 Minimization of a Convex Function

The standard general form of a convex optimization problem is minimization f(v) → min
of a convex function f : Ω → R.

The remarkable feature of such optimization is that for every point v ∈ Ω which is
not a minimum of f and for every number γ ∈ (inf(f), f(v)) there exists a vector u such
that v + tu ∈ Ω and f(v + tu) ≤ f(v) + t(γ − f(v)) for all t ∈ [0, 1]. (In other words, f
is decreasing quickly in the direction u.) In particular, every local minimum of a convex
function is its global minimum.

While it is reasonable to expect that convex optimization problems are easier to solve,
and reducing a given design setup to a convex optimization is frequently a major research
objective, it must be understood clearly that convex optimization problems are useful
only when the task of calculating f(v) for a given v (which includes checking that v ∈ Ω)
is not too complicated.

For example, let X be any finite set and let g : X → R be any real-valued function
on X. Minimizing g on X can be very tricky when the size of X is large (because there is
very little to offer apart from the random search). However, after introducing the vector
space V of all functions v : X → R, the convex set Ω can be defined as the set of all
probability distributions on X, i.e. as the set of all v ∈ V such that

v(x) ≥ 0 ∀ x,
∑

x∈X

v(x) = 1,

and f : Ω → R can be defined by

f(v) =
∑

x∈X

g(x)v(x).

Then f is convex and, formally speaking, minimization of g on X is “equivalent” to
minimization of f on Ω, in the sense that the argument of minimum of f is a function
v ∈ Ω which is non-zero only at those x ∈ X for which g(x) = min(g). However, unless
some nice simplification takes place, f(v) is “difficult” to evaluate for a particular v (the
“brute force” way of doing this involves calculation of g(x) for all x ∈ X), this “reduction”
to the convex optimization does not make much sense.
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9.2.2 Linear Programs

As it follows from Lemma 9.1, a convex set Ω can be defined by a family of linear inequal-
ities. Similarly, according to Lemma 9.3, a convex function can be defined as supremum
of a family of affine functions. The problem of finding the minimum of f on Ω when Ω is
a subset of Rn defined by a finite family of linear inequalities, i.e.

Ω = {v ∈ Rn : a′
iv ≤ bi, i = 1, . . . , m}, (9.2)

and f : Ω → R is defined as supremum of a finite family of affine functions,

f(v) = max
i=1,...,k

c′iv + di, (9.3)

where ai, ci are given vectors in Rn, and bi, di are given real numbers, is referred to as a
linear program.

In fact, all linear programs defined by (9.2),(9.3) can be reduced to the case when f is
a linear function, by appending an extra component vn+1 to v, so that the new decision
variable becomes

v̄ =

[

v
vn+1

]

∈ Rn+1,

introducing the additional linear inequalities

c̄′iv̄ = c′iv − vn+1 ≤ −di,

and defining the new objective function f̄ by

f̄(v̄) = vn+1.

Most linear programming optimization engines would work with the setup (9.2),(9.3),
where f(v) = Cv is a linear function. The common equivalent notation in this case is

Cv → min subject to Av ≤ B,

where a′
i are the rows of A, bi are the elements of the column vector B, and the inequality

Av ≤ B is understood component-wise.

9.2.3 Semidefinite Programs

A semidefinite program is typically defined by an affine function α : Rn → SN

R and a
vector c ∈ Rn, and is formulated as

c′v → min subject to α(v) ≥ 0. (9.4)
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Note that in the case when

α(v) =







b1 − a′
1v 0

. . .

0 bN − a′
Nv







is a diagonal matrix valued function, the special semidefinite program becomes a general
linear program. Therefore, linear programming is a special case of semidefinite program-
ming.

Since a single matrix inequality α ≥ 0 represents an infinite number of inequalities
x′αx ≥ 0, semidefinite programs can be used to represent constraints much more efficiently
than linear programs. The KYP Lemma explains the special importance of linear matrix
inequalities in system analysis and optimization. On the other hand, software for solving
general semidefinite programs appears to be not as well developed as in the case of linear
programming.

9.2.4 Smooth Convex Optimization

Smooth convex optimization involves minimization of a twice differentiable convex func-
tion f : Ω → R on an open convex set Ω ⊂ Rn in the situation when f(v) approaches
infinity whenever v approaches the boundary of Ω or infinity.

This case can be solved very efficiently using an iterative algorithm which updates its
current guess vt at the minimum in the following way. Let p′t = f ′(vt), Wt = f ′′(vt) > 0.
Keeping in mind that

f(vt + δ) ≈ σt(δ) = f(vt) + p′tδ + 0.5δ′Wtδ

can be approximated by a quadratic form, let

δt = −W−1
t pt

be the argument of minimum of σt(δ). Let τ = τt be the argument of minimum of
ft(τ) = f(vt + τδ) (since τ is a scalar, such a minimum is usually easy to find). Then set
vt+1 = vt + τtδt and repeat the process.

Actually, non-smooth convex optimization problems (such as linear and semidefinite
programs) are frequently solved by reducing them to a sequence of smooth convex opti-
mizations.
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9.2.5 Feasibility Search and Quasi-Convex Optimization

Convex feasibility search problems are formulated as the problems of finding an element
in a convex set Ω described implicitly by a set of convex constraints. In most situations,
it is easy to convert a convex feasibility problem to a convex optimization problem. For
example, the problem of finding a x ∈ Rn satisfying a finite set of linear inequalities
a′

ix ≤ bi, i = 1, . . . , N , can be converted to a linear program

y → min subject to a′
ix − y ≤ bi, (i = 1, . . . , N).

If y = y0 ≤ 0 for some v0 = (y0, x0) satisfying the constraints then x = x0 is a solution of
the original feasibility problem. Otherwise, if y is always positive, the feasibility problem
has no solution.

In turn, quasi-convex optimization problems can be reduced to convex feasibility
search. Consider the problem of minimization of a given quasi-convex function f : Ω → R.
Assume for simplicity that the values of f are limited to an interval [fmax, fmin]. As in the
algorithm for H-Infinity optimization, set γ− = fmin, γ+ = fmax, and repeat the following
step until the ratio (γ+ − γ−)/(fmax − fmin) becomes small enough: solve the convex fea-
sibility problem of finding v ∈ Ω such that f(v) ≤ γ where γ = 0.5(γ− + γ+); if such v
exists, set γ− = γ, otherwise set γ+ = γ.

9.3 Duality in convex optimization

Duality is extremely important for understanding convex optimization. Practically, it
delivers a major way of deriving lower bounds in convex minimization problems.

9.3.1 Dual optimization problem and duality gap

According to the remarks made before, a rather general class of convex optimization
problems is represented by the setup

f(v) = max
r∈R

{arv + br} → min subject to v ∈ Ω = {v : max
k∈K

{ckv + dk} ≤ 0}, (9.5)

where ar, ck are given row vectors indexed by r ∈ R, k ∈ K (the sets R, K are not
necessarily finite), br, dk are given real numbers, and v is a column decision vector. When
K,R are finite sets, (9.5) defines a linear program.

Consider some functions u : R 7→ R and q : K 7→ R which assign real numbers to
the indexes, in such a way that only a countable set of values u(r) = ur, q(k) = qk is
positive, and

uk ≥ 0,
∑

k

uk = 1, qr ≥ 0,
∑

r

qr ≤ 1. (9.6)
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Obviously,

f(v) ≥
∑

r

ur(arv + br),

and
∑

k

qk(ckv + dk) ≤ 0 ∀ v ∈ Ω.

Hence
f(v) ≥

∑

r

urbr +
∑

k

qkdk ∀ v ∈ Ω

whenever
∑

r

urar +
∑

k

qkck = 0, (9.7)

in which case
∑

r

urbr +
∑

k

qkdk (9.8)

is a lower bound for the minimum in (9.5). Trying to maximize the lower bound leads
to the task of maximizing (9.8) subject to (9.6),(9.7). This task, a convex optimization
problem itself, is called dual with respect to (9.5).

The key property of the dual problem is that its maximum (more precisely, supremum,
since the maximum is not necessarily achievable) equals the minimum (infimum) in the
original optimization problem (9.5).

9.3.2 The Hahn-Banach Theorem

The basis for all convex duality proofs is the fundamental Hahn-Banach Theorem. The
theorem can be formulated in two forms: geometric (easier to understand) and functional
(easier to prove).

By definition, an element v0 of a real vector space V is called an interior point of a
subset Ω ⊂ V if for every v ∈ V there exists ǫ = ǫv > 0 such that v0 + tv ∈ Ω for all
|t| < ǫv.

Theorem 9.1 Let Ω is a convex subset of a real vector space V such that 0 is an interior
point of Ω. If v0 ∈ V is not an interior point of Ω then there exists a linear function
L : V 7→ R, L 6≡ 0, such that

L(v0) ≥ sup
v∈Ω

L(v).
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In other words, a point not strictly inside a convex set can be separated from the
convex set by a hyperplane.

To give an alternative formulation of the Hahn-Banach Theorem, remember that a
non-negative function q : V 7→ R defined on a real vector space V is called a semi-norm
if it is convex and positively homogeneous (i.e. p(av) = ap(v) for all a ≥ 0, v ∈ V ).

Theorem 9.2 Let q : V 7→ R be a semi-norm on a real vector space V . Let V0 be a
linear subspace of V , and h0 : V0 7→ R be a linear function such that q(v) ≥ h0(v) for
all v ∈ V0. Then there exists a linear function h : V 7→ R such that h(v) = h0(v) for all
v ∈ V0, and h(v) ≤ q(v) for all v ∈ V .

To relate the two formulations, define q(v) as the Minkovski’ functional of Ω:

q(v) = inf{t > 0 : t−1v ∈ Ω},

and set
V0 = {tv0 : t ∈ R}, h0(tv0) = t.

9.3.3 Duality gap for linear programs

To demonstrate utility of the Hahn-Banach theorem, let us use it to prove the “zero
duality gap” statement for linear programs.

Theorem 9.3 Let A, B, C be real matrices of dimensions n-by-m, n-by-1, and 1-by-m
respectively. Assume that there exists v0 ∈ Rm such that Av0 < B. Then

sup{Cv : v ∈ Rm, Av ≤ B} = inf{B′p : p ∈ Rn, A′p = C ′, p ≥ 0}. (9.9)

The inequalities Av ≤ B, Av0 < B, and p ≥ 0 in (9.9) are understood component-
wise. Note also that inf over an empty set equals plus infinity. This can be explained
by the fact that inf is the maximal lower bound of a set. Since every number is a lower
bound for an empty set, its infimum equals +∞. Theorem 9.3 remains valid when there
exist no p ≥ 0 such that A′p = C ′, in which case it claims that inequality Av ≤ B has
infinitely many solutions, among which Cv can be made arbitrarily small.

Proof The inequality

sup{Cv : v ∈ Rm, Av ≤ B} ≤ inf{B′p : p ∈ Rn, A′p = C ′, p ≥ 0}

is straightforward: multiplying Av ≤ B by p′ ≥ 0 on the left yields p′Av ≤ B′p; when
A′p = C ′, this yields Cv ≤ B′p.
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The proof of the inverse inequality

sup{Cv : v ∈ Rm, Av ≤ B} ≥ inf{B′p : p ∈ Rn, A′p = C ′, p ≥ 0}

relies on the Hahn-Banach theorem.
Let y be an upper bound for Cv subject to Av ≤ B. If y = ∞ then, according to the

already proven inequality, there exist no p ≥ 0 such that A′p = C ′, and hence the desired
equality holds.

If y < ∞, let e denote the n-by-1 vector with all entries equal to 1. Consider the set

Ω =



















x =











x0

x1
...

xn











=

[

Cv − δ + 1
e − Av − ∆

]

∈ Rn+1 : ∆ > 0, δ > 0



















.

Then

(a) Ω is a convex set (as a linear transformation image of a set defined by linear in-
equalities);

(b) zero is an interior point of Ω (because it contains the open cube |xi| < 1, which can
be seen by setting v = 0);

(c) vector [y + 1; e −B] does not belong to Ω (otherwise Av + ∆ = B and Cv − δ = y,
which contradicts the assumption that Cv ≤ y whenever Av ≤ B).

According to the Hahn-Banach Theorem, this means that there exists a non-zero linear
functional

L

[

x0

x̄

]

= L0x0 + L̄′x̄,

where L0 ∈ R, L̄ ∈ Rn, defined on Rn+1, such that

L0(Cv − δ + 1) + L̄′(e − Av − ∆) ≤ L0(y + 1) + L̄′(e − B) ∀ ∆ > 0, δ > 0, v. (9.10)

Looking separately at the coefficients at v, δ, ∆ and at the constant term in (9.10) implies

L0C = L̄′A, L0 ≥ 0, L̄ ≥ 0, L0y ≥ L̄′B. (9.11)

Note that L0 cannot be equal to zero: otherwise L̄′A = 0 and L̄′B ≥ 0, which, after
multiplying Av0 < B by L̄ ≥ 0, L̄ 6= 0 yields a contradiction:

0 = L̄′Av0 < L̄′B ≤ L0y = 0.
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If L0 > 0 then for
p = L̄/L0

conditions (9.11) imply
A′p = C ′, p ≥ 0, B′p ≤ y.

9.4 Algorithms for convex optimization

This section describes some algorithms and software which can be used for solving convex
optimization problems.

9.4.1 Method of ellipsoids

Let f : Ω 7→ R be a a quasi-convex function defined on a bounded set Ω ⊂ Rn.
While no specific analytical description of f and Ω will be used, it is assumed that, for

a given v ∈ Rn, it is possible to check whether condition v ∈ Ω is satisfied. The function
performing this task is called feasibility oracle. It will be assumed that, in addition to
verifying condition v ∈ Ω, the oracle calculates coefficients pv, qv of an affine functional
hv(x) = pvx − qv which separates v from Ω in case v 6∈ Ω, i.e.

pvx ≥ qv ∀ x ∈ Ω, pvv ≤ qv, if v 6∈ Ω,

and separates v from the level set

Ωv = {x ∈ Ω : f(x) ≤ f(v)}

when v ∈ Ω, i.e.

pv(x − v) ≥ f(v) − f(x) ∀ x ∈ Ω, pvv = f(v), if v ∈ Ω.

Also, the following a-priori assumptions will be made about f and Ω:

(a) Ω is a bounded set, i.e. ‖v‖ ≤ R for all v ∈ Ω, where R > 0 is a given constant.

(b) f is bounded from below on Ω, i.e.

fo = inf{f(v) : v ∈ Ω} > −∞,

and the level set Ωv does not shrink too rapidly as f(v) approaches fo, i.e. there
exist constants c, m > 0 such that the volume of Ωv is not smaller than c(f(v)−fo)

m

for all v ∈ Ω.
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Uder these assumptions, the ellipsoids algorithm allows one to find an element vǫ ∈ Ω
such that f(vǫ)−fo < ǫ using O(m log(ǫ)/ log(R)) calls to the oracle, and O(n2m log(ǫ)/log(R))
real arithmetic operations.

At step k, the standard ellipsoid algorithm updates the current suboptimality level
γk, an element vk ∈ Rn such that f(vk) ≤ γk (where f(v) for v 6∈ Ω is defined as +∞),
and an ellipsoid

Ek = {x ∈ Rn : (x − xk)
′Q−1

k (x − xk) ≤ 1}

which contains all x ∈ Ω such that f(x) < γk. At the beginning, the parameters are
initialized at

γ0 = ∞, v0 = x0 = 0, Q0 = R2In.

To get γk, vk, Ek from γk−1, vk−1, Ek−1, one applies the feasibility oracle to xk−1, and
defines Ek as the minimal volume ellipsoid containing the intersection of Ek−1 with the
hyperplane

pkx + qk = hk(x) = hv(x) ≥ 0

produced by the oracle, which yields explicit formulae for xk, Qk as functions of xk−1, Qk−1, pk, qk.
In addition, if xk−1 ∈ Ω and f(xk−1) < γk−1, vk is upgraded as xk−1, and γk is upgraded
as f(xk−1) = qk, otherwise γk = γk−1 and vk = vk−1.

It can be shown that the volume of Ek is never larger than (1 − 1/(2n))k times the
volume of E0, which proves the convergence properties of the algorithm. In must be
noted that, despite having remarkable provable convergence properties, most practical
implementations of the ellipsoids algorithm turn out to be inferior to the alternatives,
such as the interior point method.

9.4.2 Linear programming

The optimization toolbox of MATLAB provides function linprog.m for solving linear pro-
grams. The simplest call format is

v=linprog(C’,A,B)

to solve the problem of minimizing Cv subject to Av ≤ B.
My past experience with this function is not very positive: it starts failing already

for very moderately sized tasks. An alternative (and also a free option) is the SeDuMi
package, which can be downloaded from

http://fewcal.kub.nl/sturm/software/sedumi.html
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When SeDuMi is installed, it can be used to solve simultaneously the dual linear programs

Cx → max subject to B − Ax ≥ 0

and
B′p → min subject to A′p = C ′, p ≥ 0

by calling

[p,x]=sedumi(A’,C’,B);

Actually, the indended use of SeDuMi is solving semidefinite programs, which can be
achieved by changing the interpretation of the ≥ 0 condition (set by the fourth argument
of sedumi). In general, inequality z ≥ 0 will be interpreted as z ∈ K, where K is a
self-dual cone. Practically speaking, by saying that z ∈ K one can specify that certain
elements of vector z must form positive semidefinite matrices, instead of requiring the
elements to be non-negative.

Note that both linprog.m and sedumi.m require the primal and dual optimization
problems to be strictly feasible (i.e. inequalities Ax < B and p > 0 subject to A′p = C ′

must have solutions). One can argue that a well formulated convex optimization problem
should satisfy this condition anyway.

9.4.3 Semidefinite programming

While SeDuMi is easy to apply for solving some semidefinite programs, it is frequently
inconvenient for situations related to control systems analysis and design. A major need
there is to be able to define matrix equalities or inequalities in a “block format”, such as
in the case of a Lyapunov inequality

AP + PA′ = Y ≥ 0, P > 0

where A is a given square matrix, and P = P ′, Y = Y ′ are matrix decision parameters.
The LMI Control Toolbox of MATLAB provides interface commands for defining linear
matrix inequalities in a block matrix format. However, this interface itself is quite scriptic,
and hence is not easy to work with.

The package IQCbeta, freely available from

http://www.math.kth.se/~cykao/

and already installed on Athena, helps to cut significantly the coding effort when solving
semidefinite programs.

To use IQCbeta, put the content of
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http://web.mit.edu/6.245/www/images/startup6245.m

into your startup.m file (should be in your ~/matlab/ directory).
Here is an example of a function which will minimize the largest eigenvalue of PA+A′P

where A is a given matrix, and P is the symmetric matrix decision variable satisfying
0 ≤ P ≤ I.

function P=example_sdp_lyapunov(A)

% function P=example_sdp_lyapunov(A)

%

% demonstrates the use of IQCbeta by finding P=P’ which minimizes

% the largest eigenvalue of PA+A’P subject to 0<=P<=I

n=size(A,1); % problem dimension

abst_init_lmi; % initialize the LMI solving environment

p=symmetric(n); % p is n-by-n symmetric matrix decision variable

y=symmetric; % y is a scalar decision variable

p>0; % define the matrix inequalities

p<eye(n);

p*A+A’*p<y*II(n);

lmi_mincx_tbx(y); % call the SDP optimization engine

P=value(p); % get value of the optimal p
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9.5 Convexifivcation of model reduction problems

A typical model reduction problem is not convex in an “obvious” way. This is mainly
due to the fact that the set of all rational functions of a given order is not convex. For
example, the arithmetic mean of n first order transfer functions Fk(s) = 1/(s + k), where
k = 1, 2, . . . , n, has order n, not 1. Nevertheless, there are several cases when an optimal
model reduction problem can be “convexified” by introducing a new set of parameters.

9.5.1 Quasi-convexity of real rational approximations

Consider the task of finding the best uniform approximation of a given non-negative
function F : [0,∞) 7→ [0,∞) by a positive rational function

F̂ (θ) =
b(θ)

a(θ)
=

b0 + b1θ + · · ·+ bmθm

a0 + a1θ + · · ·+ am−1θm−1 + θm

of a given order m. The term “uniform” means that the functional

dist{F, F̂} = sup
θ∈[0,∞)

|F (θ) − F̂ (θ)|

is to be minimized. It can be assumed without loss of generality that a(θ) > 0 and
b(θ) > 0 for θ ∈ [0,∞).

Let
v = [b0; b1; . . . ; bm; a0; a1; . . . ; am−1] ∈ R2m+1

be the vector of decision parameters in this “model reduction” problem. Let Ω ⊂ R2m+1

denote the set of all v such that the resulting polynomials a = a(θ) and b = b(θ) are
positive for t ∈ [0,∞). The approximation quality measure m(F̂ ) = dist(F, F̂ ) defines a
function f : Ω 7→ R. It turns out that f is a quasi-convex function.

Indeed, the set Ω = {v} is defined by an (infinite) family of linear inequalities

pa
θv + qa

θ > 0, qb
θv > 0,

with respect to v ∈ R2m+1, where

pa
θ =

[

0
θm−1

]

, qa
θ = θm, pb

θ =

[

θm

0

]

, θk =











1
θ
...
θk











,

parameterized by θ ∈ [0,∞). Hence Ω is a convex set.
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While it can be shown that the functional f : Ω 7→ R is not convex, its level sets

Ωγ = {v ∈ Ω : f(v) < γ}

can be proven to be convex. Indeed, Ωγ is the subset of Ω defined by the inequalities

p±θ,γv + q±θ,γ > 0,

where

p+
θ,γ =

[

θm

(γ − F (θ))θm−1

]

, q+
θ,γ = (γ − F (θ))θm,

p−θ,γ =

[

−θm

(γ + F (θ))θm−1

]

, q+
θ,γ = (γ + F (θ))θm,

and hence Ωγ is convex for all γ.
Thanks to the quasi-convexity feature, the task of minimizing f on Ω can be solved

numerically by using the ellipsoid algorithm. Alternatively, this can be done by combining
semidefinite programming with a binary search, or, somewhat less efficiently, by combining
linear programming with a binary search. These options are explored in the following
subsections.

9.5.2 Ellipsoid algorithm in real rational approximations

As it was mentioned earlier, in order to apply the ellipsoid algorithm to the optimal real
rational approximation problem, one has to provide the following three items:

(a) a feasibility oracle;

(b) an ellipsoid containing Ω;

(c) an assurance that the volume of Ωγ does not decrease too rapidly as γ approaches
its minimum.

It is easy to see that condition (b) cannot be satisfied without changing the parameteri-
zation again. Indeed, the polynomials

br(θ) ≡ 1, ar(θ) = (1 + rθ)m

define an element v ∈ Ω for all r > 0, and the coefficients of a are unbounded as r → ∞
despite the fact that dist(F, br/ar) is bounded. Hence some level sets of f are unbounded
sets.
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A resolution of this problem (caused, in fact, by using coefficients of polynomials as
parameters, ignoring the fact that the powers θk of θ ∈ [0,∞) do not form an orthogonal
basis) lies in re-defining the vector of decision parameters. Consider the substitution

θ = ω2
0 tan2(u/2), u ∈ (−π, π),

where ω0 > 0 is a fixed positive number. Then

b(θ)

a(θ)
=

b̃(u)

ã(u)
,

where

b̃(u) =

m
∑

k=0

bkω
2m
0 cos2m−2k(u/2) sin2m(u/2),

ã(u) =
m

∑

k=0

akω
2m
0 cos2m−2k(u/2) sin2m(u/2),

and am = 1. By assumption, ã(u) > 0 for u 6= (2n + 1)π. Since am = 1, ã(u) > 0 for u =
(2n + 1)π as well. Since sin2k(u/2) cos2m−2k(u) can be represented as linear combinations
of cos(nu) with n = 0, 1, . . . , k, ã and b̃ are actually trigonometric polynomials

ã(u) =
m

∑

k=0

ãk cos(ku), b̃(u) =
m

∑

k=0

b̃k cos(ku).

In terms of ã, b̃, the original problem can be reformulated as the task of minimizing

f̃ = sup
u∈R

|F̃ (u) − b̃(u)/ã(u)|,

where
F̃ (u) = F (ω2

0 tan2(u/2)),

subject to the constraints

ã(u) > 0, b̃(u) > 0 ∀ u ∈ R.

Since

ã0 =
1

π

∫ π

0

ã(u)du > 0,

and dividing all coefficients of ã, b̃ by the same positive number does not change b̃/ã, one
can assume that ã0 = 1.
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Now f̃ = f̃(ṽ) is a quasi-convex function defined over the set Ω̃ of all vectors

ṽ = [̃b0; b̃1; . . . ; b̃m; ã0; ã1; . . . ; ãm−1] ∈ R2m+1

such that

1 +
m

∑

k=1

ãk cos(ku) > 0,
m

∑

k=0

b̃k cos(ku) > 0.

Lemma 9.6 If F is uniformly bounded on [0,∞), all level sets of F̃ are bounded as well.
More precisely,

|ak| < 2, |bk| < 2(1 + 2m)(γ + ‖F‖∞)

for all ṽ ∈ Ω̃γ.

Proof Since

1 ± ãk/2 =
1

π

∫ π

0

(1 ± cos(ku)ã(u)du 0

for k = 1, . . . , m, it follows that |ãk| < 2 for all k. Hence

|ã(u)| ≤ 1 +

m
∑

k=1

|ãk| < 1 + 2m.

Since |F̃ (u) − b̃(u)/ã(u)| < γ for ṽ ∈ Ω̃γ , we have

|b̃(u)| ≤ |F̃ (u)| · |ã(u)| + γ|ã(u)| < (1 + 2m)(γ + ‖F‖∞).

Finally, the bound for |b̃k| follows from

b̃k =
2

π

∫ π

0

cos(ku)b̃(u)du, (k > 0), b̃0 =
1

π

∫ π

0

b̃(u)du.

Lemma 9.6 provides an initial bounding ellipsoid for the optimal real rational approxi-
mation problem. In addition, a feasibility oracle can be introduced under the assumption
that F = F (θ) is a rational function without poles on the non-negative real axis. The
oracle is based on a procedure of finding maximum (over u ∈ R) of a given ratio

g(u) = p(u)/q(u)
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of two trigonometric polynomials

p(u) = p0 +
n

∑

k=0

pk cos(ku) = p0 +
1

2

n
∑

k=1

pk(z
k + z−k),

q(u) = 1 +

n
∑

k=0

qk cos(ku) = q0 +
1

2

n
∑

k=1

qk(z
k + z−k),

where z = eju, and it is assumed that q(u) > 0 for all u. Since the derivative of g is given
by

ġ(u) =
ṗ(u)q(u) − p(u)q̇(u)

q(u)2
,

and
h(z) = z2n(ṗ(u)q(u) − p(u)q̇(u)) (z = eju)

is a polynomial of degree not larger than 4n with respect to z, the maximum of g can be
found by calculating all roots zi of h such that |zi| = 1, i.e. zi = ejui, and then evaluating
g at all ui.

Finally, to show that the level sets Ω̃γ have sufficiently large volume as γ converges
to the infimum of f̃ on W̃ , begin with proving existence of an optimal pair b̃∗, ã∗ of
trigonometric polynomials, for which ã∗(u) > 0 and b̃∗(u) ≥ 0 for all u. Indeed, consider an
optimizing sequence of pairs (ã, b̃), and use boundedness to show existence of a converging
subsequence. For the limit pair (ã, b̃), one must have ã(u) ≥ 0 and b̃ ≥ 0. However, since
b̃(u)/ã(u) is bounded, all solutions of equation ã(u) = 0 must have an even order, and
must be also solutions of b̃(u) = 0 of a not lesser order. Hence, all zeros of a = a(u) can
be cancelled with the corresponding zeros of b̃, which leads to an optimal a∗(u) > 0.

For a given optimal pair (ã∗, b̃∗) such that

ã∗(u) ≥ ǫ > 0

and
|F̃ (u) − b̃∗(u)/ã∗(u)| ≤ γ∗ ∀ u,

perturbing ã∗
k and b̃∗k with k = 1, . . . , m by less than δǫ/m), and adding a number between

δǫ and 2δǫ to b̃∗0 yields a pair b̃, ã which satisfy all constraints and satisfy

|F̃ (u) − b̃(u)/ã(u)| ≤ γ∗ + δ ∀ u.

Since the volume of the perturbation set is O(ǫ2m+1δ2m+1m−m−1), this proves the desired
lower bound for the level set volume.
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9.5.3 A relaxation for H-Infinity optimal model reduction

One of the most desirable optimization objectives in model reduction of stable LTI systems
is minimization of weighted H-Infinity norm of the frequency domain approximation error

‖W (G− Ĝ)‖∞ → min : Ĝ(s) =
p(s)

q(s)
, q(s) 6= 0 for Re(s) ≥ 0, deg(q) = m, deg(p) ≤ m,

(9.12)
where G, W are given stable transfer functions, m is a given positive integer, and p, q are
real polynomials to be optimized.

At the moment, no satisfactory solution of problem (9.12) is available. In particular,
the problem is not convex with respect to many reasonable choices of decision variables
studied in the past. Nevertheless, there exist a way of relaxing the original setup, by
replacing it with a convex optimization problem which has a broader choice of possible
Ĝ. The minimum cost in the relaxed optimization problem provides a lower bound for
the minimum in the original weighted H-Infinity optimal model reduction. In addition,
the argument of the minimum in the relaxed problem can be used to find a suboptimal
(though not optimal) solution in (9.12).

The main idea of the relaxation is common in the theory of model reduction: it allows
an anti-stable component Ĝ− in Ĝ(s) = Ĝ+ + Ĝ− (here anti-stable means “strictly proper
with no poles in the left half plane”). Accordingly, the weighted H-Infinity norm should
be “replaced” by the weighted L-Infinity norm (same thing, just extended to non-stable
transfer functions). The benefit of adding an anti-stable component may appear to be a
little bit unusual: after all, adding an anti-stable transfer function to a stable one always
increases the overall L2 norm:

∫ ∞

−∞

|G(jω) − Ĝ+(jω)|2dω ≤

∫ ∞

−∞

|G(jω) − Ĝ+(jω) − Ĝ−(jω)|2dω

whenever G, Ĝ+ are stable and Ĝ− is anti-stable. Nevertheless, adding an anti-stable
transfer function to a stable transfer function can reduce the overall L-Infinity norm, as
in

81

128
=

∥

∥

∥

∥

1

s + 1
+

1

2

1

s − 1

∥

∥

∥

∥

2

∞

<

∥

∥

∥

∥

1

s + 1

∥

∥

∥

∥

2

∞

= 1.

The relaxed formulation allows Ĝ(s) to be of the form

Ĝ(s) =
p(s)

q(s)
+

r(s)

q(−s)
, (9.13)
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where p, q, r are real polynomials, q has degree m and is a Hurwitz polynomial (all roots
have negative real part), q has degree not larger than m, and the degree of r is less than
m. It turns out that, after a re-parameterization, the objective ‖W (G − Ĝ)‖∞ becomes
quasi-convex, which makes it possible to apply standard convex optimization algorithms
in its minimization.

9.5.4 Convexifying re-parameterization of the relaxed problem

It turns out that the coefficients of p, q, r in (9.13) do not constitute a convenient set of
parameters for minimizing ‖W (G − Ĝ)‖∞. The following lemma provides an alternative
set of decision parameters.

Lemma 9.7 Let m > 0 be a given positive integer. Let Ωm
qpr be the set of all triplets

(q, p, r) of real polynomials

q(s) = sm + qm−1s
m−1 + · · ·+ q1s + q0,

p(s) = pmsm + pm−1s
m−1 + · · · + p1s + p0,

r(s) = rm−1s
m−1 + . . . r1s + r0,

satisfying the condition
q(s) 6= 0 for Re(s) ≥ 0. (9.14)

Let Ωm
abc be the set of all triplets (a, b, c) of real polynomials

a(θ) = θm + am−1θ
m−1 + · · · + a1θ + a0,

b(θ) = bmθm + bm−1θ
m−1 + · · ·+ b1θ + b0,

c(θ) = cm−1θ
m−1 + · · · + c1θ + c0,

satisfying the condition
a(θ) > 0 for θ ≥ 0. (9.15)

There is a one-to-one correspondence τm : Ωm
qpr 7→ Ωm

abc between the sets Ωm
qpr and Ωm

abc

such that

Ĝ(jω) =
p(jω)

q(jω)
+

r(jω)

q(−jω)
=

b(ω2) + jωc(ω2)

a(ω2)
∀ ω ∈ R (9.16)

for (a, b, c) = τm(q, p, r). Given (q, p, r) ∈ Ωm
qpr, the corresponding (a, b, c) = τm(q, p, r) ∈

Ωm
abc are defined by

a(ω2) = q(jω)q(−jω),

b(ω2) =
1

2
[p(jω)q(−jω) + p(−jω)q(jω) + r(jω)q(jω) + r(−jω)q(−jω)],

c(ω2) =
1

2jω
[p(jω)q(−jω)− p(−jω)q(jω) + r(jω)q(jω)− r(−jω)q(−jω)].
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Given (a, b, c) ∈ Ωm
abc, the polynomial q of the corresponding (q, p, r) = τ−1

m (a, b, c) ∈ Ωm
qpr

is defined by

q(s) =
∏

a(−s2

k
)=0, Re(sk)<0

(s − sk), (9.17)

where sk are all zeros of a(−s2) with negative real part (multiplicity counts), and p, r are
found as the unique solution of the polynomial equation

p(s)q(−s) + r(s)q(s) = b(−s2) + sc(−s2), deg(p) ≤ m, deg(q) < m. (9.18)

Proof It is easy to see that, in order to satisfy (9.16), polynomials a, b, c have to be defined
by (a, b, c) = τm(q, p, r). Let us show that, given (a, b, c) ∈ Ωm

abc, there is a unique triplet
(q, p, r) ∈ Ωm

qpr satisfying (9.16), and that this triplet is uniquely defined by (9.17),(9.18).
Indeed, since a(ω2) = q(jω)q(−jω), we have a(−s2) = q(s)q(−s) for s on the imag-

inary axis, hence (since a, q are polynomials) a(−s2) = q(s)q(−s) for all s ∈ C. Hence
all roots of q must be stable roots of a(−s2). Since a(−s2) is invariant with respect to
replacing s by −s, and is not zero on the imaginary axis, a(−s2) has exactly m stable
roots (counting multiplicity), which proves (9.17). Now, due to (9.16), identity (9.18)
holds for s on the imaginary axis. Hence (since this is a polynomial identity), (9.18) holds
for all s. To show existence and uniqueness of solution of (9.18) with respect to p, r, note
that the linear function

(p, r) 7→ δ : δ(s) = p(s)q(−s) + r(s)q(s)

maps a 2m + 1-dimensional vector space (of pairs of real polynomials p, r of degrees not
exceeding m and m − 1 respectively) into a 2m + 1-dimensional vector space (of real
polynomials δ of degree not exceeding 2m).

Hence, to prove existence and uniqueness of solutions, it is sufficient to show that the
only pair (p, r) mapped into zero is is p ≡ 0, r ≡ 0. Indeed, if δ ≡ 0 then

r(s)q(s) = p(s)q(−s).

Since q has no roots with positive real part, and q(−s) has m roots with positive real
part, r(s) must have m roots with positive real part, which implies r ≡ 0, as deg(r) < m.

9.5.5 Quasi-convexity with respect to a, b, c.

According to Lemma 9.7, minimization of ‖W (G−Ĝ)‖∞ subject to (9.13), where (q, p, r) ∈
Ωm

qpr is equivalent to the optimization problem

Φ(a, b, c) = sup
ω∈R

∣

∣

∣

∣

W (jω)

(

G(jω) −
b(ω2) + jωc(ω2)

a(ω2)

)∣

∣

∣

∣

→ min, (a, b, c) ∈ Ωm
abc. (9.19)
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The following lemma states quasi-convexity of Φ, thus opening the way torward effi-
cient algorithms for solving (9.19).

Lemma 9.8 Consider the representation of triplets (a, b, c) ∈ Ωm
abc as vectors from v ∈

R3m+1, according to

v = [am−1; . . . ; a0; bm; bm−1; . . . ; b0; cm−1; . . . ; c0].

Then all level sets
Ωm,γ

abc = {(a, b, c) ∈ Ωm
abc : Φ(a, b, c) < γ}

are convex.

Proof Ωm,γ
abc is defined by the (infinite) family of inequalities

a(ω2) > 0, (9.20)

∣

∣

∣

∣

W (jω)

(

G(jω) −
b(ω2) + jωc(ω2)

a(ω2)

)∣

∣

∣

∣

< γ, (9.21)

parameterized by ω ∈ R. The inequalities defined by (9.20) are all linear. On the other
hand, multiplying (9.21) by a(ω2) yields an equivalent set of inequalities

∣

∣W (jω)
(

G(jω)a(ω2) − b(ω2) − jωc(ω2)
)∣

∣ < γa(ω2).

Since
|z| = max

|w|=1
Re(wz) ∀ z ∈ C,

the last condition is equivalent to

Re
(

w
(

G(jω)a(ω2) − b(ω2) − jωc(ω2)
))

< γa(ω2) ∀ |w| ≤ |W (jω)|, (9.22)

which is a family of linear inequalities parameterized by w and ω.

From this point on, the relaxed model reduction problem can be treated the same
way the real rational approximation problem was treated, including replacing ω with
ω0 tan(u/2), using root calculations within the feasibility oracle, finding an initial bound-
ing ellipsoid, etc.
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9.5.6 Theoretical properties of relaxed reduced model

One the minimum σ̃m+1(G) and an optimal (or a good quality suboptimal) solution
(q, p, r) ∈ Ωm

qpr of the relaxed mdel reduction problem are available, they can be used
as “ad hoc” solutions in the original weighted H-Infinity model reduction problem: σ̃m+1

becomes a lower bound for the minimum in the original problem, while Ĝrlx = p/q can
be used as the reduced model.

The following theorem states that the relaxed convex optimization approach provides
information about the original problem which is at least as valuable as the data produced
by the balanced truncation algorithm.

Theorem 9.4 Assume that W ≡ 1. Then

(a) σ̃m+1(G) > σm+1(G) for all stable transfer functions G, of order larger than m;

(b) ‖G − Ĝrlx‖∞ ≤ mσ̃m+1(G).

The proof of Theorem 9.4 will be given in a future lecture, as it requires better under-
standing of Hankel singular numbers.

Item (a) of Theorem 9.4 states that the relaxation approach provides better lower
bounds than those given by the Hankel singular numbers. Item (b)] shows that, in the
relaxation-based model reduction, an a-priori upper bound for the H-Infinity error of
model reduction can be given in terms of σ̃m+1(G) alone.

9.5.7 Sampled data model reduction

When the order of G is large, exact calculation of Φ(a, b, c) (L-Infinity approximation
error in the relaxed setup) becomes prohibitively expensive. A significant benefit of the
relaxation approach is that a lower bound Φ−(a, b, c) of Φ(a, b, c) can be calculated with
the knowledge of frequency samples of G:

Φ−(a, b, c) = max
k

∣

∣

∣

∣

W (jωk)

(

G(jωk) −
b(ω2

k) + jωkc(ω
2
k)

a(ω2
k)

)∣

∣

∣

∣
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where (ωk)
N
k=1 is a selected set of frequencies. Quasi-convexity of Φ− follows easily using

the standard arguments. The minimum of Φ− still provides a lower bound for the original
weighted H-Infinity model reduction problem. When G is defined by a state space model
of order n which is much larger than m, calculating the samples G(jωk) becomes the most
expensive part of model reduction process.


