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Problem 1.1

For all values of parameter a ∈ R, find the order of the LTI system with transfer matrix

H(s) =
1

s + 1

[

1 1
1 a

]

.

Optional: what is the relation between the order of H(s) = M/(s + 1) and the rank of
matrix M?

Problem 1.2

LTI system with impulse response

g(t) = u(t) − u(t − 1)

is approximated by the first order system with transfer function Ĝ(s) = 1/(1 + 0.5s).
Find (approximately) the H-Infinity norm of the approximation error system.
Hint: calculate G(s) analytically and use frequency sampling.

Problem 1.3

For all values of parameter a ∈ R, find L2 gain of system

f(t) 7→ y(t) = |f(t)| − f(t − a).
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Problem 1.4

A feedback design setup consists of a heat source supplying a controlled amount f = f(t)
of heat to one end of a homogeneous beam, and a sensor measuring the temperature
y = y(t) at the other end of the beam. The distribution v = v(t, θ) of temperature along
the normalized length of the beam (from one end at θ = 0 to the other end at θ = 1) is
described by the heat equation

dv(t, θ)

dt
=

d2v(t, θ)

dθ2

with boundary conditions

dv(t, θ)

dθ

∣

∣

∣

∣

θ=0

= −f(t),
dv(t, θ)

dθ

∣

∣

∣

∣

θ=1

= 0.

A proportional feedback

f(t) = K(r(t) − y(t)) = K(r(t) − v(t, 1)),

where r = r(t) is the reference input (the desired temperature at the θ = 1 end of the
beam) is proposed to control y(t).

It is expected that using a larger value of the feedback gain K will result in a faster
closed loop response. On the other hand, using a value of K which is too large will
destabilize the feedback system. To predict the closed loop behavior, a reduced model of
the true system is proposed, based on replacing the original PDE with an approximation
Ĝn of order n − 1:

v̇1 = n2(v2 − v1) + nf,

v̇k = n2(vk−1 + vk+1 − 2vk), (k = 2, . . . , n − 2)

v̇n−1 = n2(vn−2 − vn−1),

y = vn−1,

where n > 3 is an integer parameter. Here it is expected that

vk(t) ≈ v(t, k/n),

v1(t) + f(t)/n ≈ v(t, 0),

vn−1(t) ≈ v(t, 1).
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(a) For all n, find matrices A, B, C, D of the state space model of the approximating
system Ĝn, assuming that its state is

x(t) =











v1(t)
v2(t)

...
vn−1(t)











.

(b) For n = 4, 10, 100 find (approximately) the maximal K0 > 0 such that Ĝn is stabi-
lized by the feedback f(t) = −Ky(t) for all K ∈ (0, K0).
Hint: you can use Bode plots of Ĝn generated by MATLAB.

(c) Find an analytical expression for the transfer function G = G(s) of the original
system.
Hint: look for a solution v(t, θ) = w(θ, s)est of the system equations with f(t) = est.

(d) Find analytically the constant ρ = ρn such that the difference G − ρnĜn has no
unstable poles. Calculate (approximately) the H-Infinity norm of G − ρnĜn for
n = 4, 10, 100.

(e) Use the small gain theorem and the results from (a),(b), and (d) to estimate the
maximal K0 such that G is stabilized by the feedback f(t) = −Ky(t) for all K ∈
(0, K0).

(f) Use the Bode plot of G to check accuracy of the result from (e).


