Massachusetts Institute of Technology
 Department of Electrical Engineering and Computer Science
 6.242, Fall 2004: MODEL REDUCTION *

Problem set 1^{1}

Problem 1.1

For all values of parameter $a \in \mathbf{R}$, find the order of the LTI system with transfer matrix

$$
H(s)=\frac{1}{s+1}\left[\begin{array}{ll}
1 & 1 \\
1 & a
\end{array}\right]
$$

Optional: what is the relation between the order of $H(s)=M /(s+1)$ and the rank of matrix M ?

Problem 1.2

LTI system with impulse response

$$
g(t)=u(t)-u(t-1)
$$

is approximated by the first order system with transfer function $\hat{G}(s)=1 /(1+0.5 s)$. Find (approximately) the H-Infinity norm of the approximation error system.
Hint: calculate $G(s)$ analytically and use frequency sampling.

Problem 1.3

For all values of parameter $a \in \mathbf{R}$, find L 2 gain of system

$$
f(t) \mapsto y(t)=|f(t)|-f(t-a)
$$

[^0]
Problem 1.4

A feedback design setup consists of a heat source supplying a controlled amount $f=f(t)$ of heat to one end of a homogeneous beam, and a sensor measuring the temperature $y=y(t)$ at the other end of the beam. The distribution $v=v(t, \theta)$ of temperature along the normalized length of the beam (from one end at $\theta=0$ to the other end at $\theta=1$) is described by the heat equation

$$
\frac{d v(t, \theta)}{d t}=\frac{d^{2} v(t, \theta)}{d \theta^{2}}
$$

with boundary conditions

$$
\left.\frac{d v(t, \theta)}{d \theta}\right|_{\theta=0}=-f(t),\left.\quad \frac{d v(t, \theta)}{d \theta}\right|_{\theta=1}=0
$$

A proportional feedback

$$
f(t)=K(r(t)-y(t))=K(r(t)-v(t, 1)),
$$

where $r=r(t)$ is the reference input (the desired temperature at the $\theta=1$ end of the beam) is proposed to control $y(t)$.

It is expected that using a larger value of the feedback gain K will result in a faster closed loop response. On the other hand, using a value of K which is too large will destabilize the feedback system. To predict the closed loop behavior, a reduced model of the true system is proposed, based on replacing the original PDE with an approximation \hat{G}_{n} of order $n-1$:

$$
\begin{aligned}
\dot{v}_{1} & =n^{2}\left(v_{2}-v_{1}\right)+n f, \\
\dot{v}_{k} & =n^{2}\left(v_{k-1}+v_{k+1}-2 v_{k}\right), \quad(k=2, \ldots, n-2) \\
\dot{v}_{n-1} & =n^{2}\left(v_{n-2}-v_{n-1}\right), \\
y & =v_{n-1},
\end{aligned}
$$

where $n>3$ is an integer parameter. Here it is expected that

$$
\begin{aligned}
v_{k}(t) & \approx v(t, k / n), \\
v_{1}(t)+f(t) / n & \approx v(t, 0), \\
v_{n-1}(t) & \approx v(t, 1) .
\end{aligned}
$$

(a) For all n, find matrices A, B, C, D of the state space model of the approximating system \hat{G}_{n}, assuming that its state is

$$
x(t)=\left[\begin{array}{c}
v_{1}(t) \\
v_{2}(t) \\
\vdots \\
v_{n-1}(t)
\end{array}\right] .
$$

(b) For $n=4,10,100$ find (approximately) the maximal $K_{0}>0$ such that \hat{G}_{n} is stabilized by the feedback $f(t)=-K y(t)$ for all $K \in\left(0, K_{0}\right)$.
Hint: you can use Bode plots of \hat{G}_{n} generated by MATLAB.
(c) Find an analytical expression for the transfer function $G=G(s)$ of the original system.
Hint: look for a solution $v(t, \theta)=w(\theta, s) e^{s t}$ of the system equations with $f(t)=e^{s t}$.
(d) Find analytically the constant $\rho=\rho_{n}$ such that the difference $G-\rho_{n} \hat{G}_{n}$ has no unstable poles. Calculate (approximately) the H-Infinity norm of $G-\rho_{n} \hat{G}_{n}$ for $n=4,10,100$.
(e) Use the small gain theorem and the results from (a),(b), and (d) to estimate the maximal K_{0} such that G is stabilized by the feedback $f(t)=-K y(t)$ for all $K \in$ $\left(0, K_{0}\right)$.
(f) Use the Bode plot of G to check accuracy of the result from (e).

[^0]: *(CA. Megretski, 2004
 ${ }^{1}$ Version of September 15, 2004. Due September 22, 2004.

