Massachusetts Institute of Technology
 Department of Electrical Engineering and Computer Science
 6.242, Fall 2004: MODEL REDUCTION *

Problem set 1 solutions ${ }^{1}$

Problem 1.1

For all values of parameter $a \in \mathbf{R}$, find the order of the LTI System with TRANSFER MATRIX

$$
H(s)=\frac{1}{s+1}\left[\begin{array}{ll}
1 & 1 \tag{1.1}\\
1 & a
\end{array}\right]
$$

Optional: What is the relation between the order of $H(s)=M /(s+1)$ and the rank of matrix M ?

The order of system $H(s)=M /(s+1)$ equals the rank of M. In particular, for (1.1), the order is 2 when $a \neq 1$ and 1 when $a=1$.

To prove the statement, let n be the rank of M. Then $M=F L$, where F, L are real matrices of rank n and of dimensions m-by- n and n-by- k respectively. A state space model of H with n states is given by

$$
\dot{x}=-x+L f, \quad y=F x .
$$

Since both controllability matrix

$$
M_{c}=\left[\begin{array}{llll}
L & -L & L & \ldots
\end{array}\right]
$$

[^0]and observability matrix
\[

M_{o}=\left[$$
\begin{array}{c}
F \\
-F \\
F \\
\vdots
\end{array}
$$\right]
\]

have rank n, the state space model is minimal, and hence the order of H equals n.

Problem 1.2

LTI SYSTEM WITH IMPULSE RESPONSE

$$
g(t)=u(t)-u(t-1)
$$

IS APPROXIMATED BY THE FIRST ORDER SYSTEM WITH TRANSFER FUNCTION $\hat{G}(s)=$ $1 /(1+0.5 s)$. Find (approximately) the H-Infinity norm of the approximation ERROR SYSTEM.

The transfer function of the original system is given by

$$
G(s)=\frac{1-e^{-s}}{s}
$$

A simple-minded algorithm for numerical calculation of $\|G-\hat{G}\|_{\infty}$ can be based on evaluating $|G(j \omega)-\hat{G}(j \omega)|$ at

$$
\omega=\Omega / N, 2 \Omega / N, 3 \Omega / N, \ldots
$$

To check the accuracy of the algorithm, note that

$$
|d G(j \omega) / d \omega| \leq 1, \quad|d \hat{G}(j \omega) / d \omega| \leq 0.5 \quad \forall \omega \in \mathbf{R}
$$

and

$$
|G(j \omega)|<2 / \Omega, \quad|\hat{G}(j \omega)|<2 / \Omega \mid \quad \forall
$$

Hence the error from sampling does not exceed

$$
\frac{3}{2} \cdot \frac{\Omega}{2 N}=\frac{3 \Omega}{4 N}
$$

and the error from using a finite frequency range does not exceed

$$
\frac{2}{\Omega}+\frac{2}{\Omega}=\frac{4}{\Omega}
$$

The total accuracy (in the case of precise arithmetic) would be

$$
\frac{4}{\Omega}+\frac{3 \Omega}{4 N} \leq \frac{2 \sqrt{3}}{\sqrt{N}}
$$

which is maximized at $\Omega=4 \sqrt{N} / \sqrt{3}$.
The actual calculation is performed by the following MATLAB function.

```
function E=ps12_6242_2004(N)
% function E=ps12_6242_2004(N)
%
% estimates H-Infinity norm of (1-exp(-s))/s-1/(1+0.5s)
% larger N means better quality of estimation
if nargin<1, N=10000; end % default number of samples
W=4*sqrt(N/3) ; % optimal W
e=8/W; % error bound
W=(1:N)*W/N; % w-samples
s=j*W; % s-samples
G=(1-exp(-s))./s; % G-hamples
Ghat=1./(1+0.5*s); % Ghat-samples
E=max(abs(G-Ghat)); % calculated H-Infinity norm
fprintf('\nThe norm is between %f and %f\n',E-e,E+e);
close(gcf)
subplot(2,1,1); plot(w,real(G),w,real(Ghat)); grid
subplot(2,1,2); plot(w,imag(G),w,imag(Ghat)); grid
```

The modeling error norm turns out to be about 0.3957 .

Problem 1.3

For all values of parameter $a \in \mathbf{R}$, find L2 gain of system

$$
f(t) \mapsto y(t)=|f(t)|-f(t-a)
$$

The answer is 2 for $a \geq 0$ and ∞ for $a<0$.

To show that the gain is not smaller than 2 , consider the input $f_{0}(t) \equiv-1$, producing the output $y_{0}(t) \equiv 2$. Since every $\gamma \geq 0$ for which the integrals

$$
\int_{0}^{T}\left\{\gamma^{2}\left|f_{0}(t)\right|^{2}-\left|y_{0}(t)\right|^{2}\right\} d t=T\left(\gamma^{2}-4\right)
$$

are bounded from below as $T \rightarrow+\infty$ must satisfy $\gamma \geq 2$, we conclude that the L2 gain of the system is not smaller than 2 .

To show that that gain is not larger than 2 for $a \geq 0$, note that

$$
\left|f_{1}+f_{2}\right|^{2} \leq 2\left(\left|f_{1}\right|^{2}+\left|f_{2}\right|^{2}\right)
$$

for all real numbers f_{1}, f_{2}, and hence

$$
\begin{gathered}
\int_{0}^{T}|(|f(t)|-f(t-a))|^{2} d t \leq 2 \int_{0}^{T}|f(t)|^{2} d t+2 \int_{0}^{T}|f(t-a)|^{2} d t \\
\leq 2 \int_{-a}^{0}|f(t)|^{2} d t+4 \int_{0}^{T}|f(t)|^{2} d t
\end{gathered}
$$

Therefore

$$
\int_{0}^{T}\left\{4\left|f_{0}(t)\right|^{2}-\left|y_{0}(t)\right|^{2}\right\} d t
$$

is bounded from below by the constant

$$
2 \int_{-a}^{0}|f(t)|^{2} d t
$$

which does not depend on T. Hence L2 gain is not larger than 2 for $a \geq 0$.
Finally, to show that the gain is infinite for $a<0$, consider the input

$$
f_{h}(t)=e^{h t} u(t)= \begin{cases}e^{h t}, & t \geq 0 \\ 0, & t<0\end{cases}
$$

where $h>0$ is a parameter. Then, for $t \geq 0$, the corresponding output $y=y_{h}(t)$ satisfies

$$
\left|y_{h}\right| \geq e^{h t}\left|e^{a h}-1\right|,
$$

and hence

$$
\int_{0}^{T}\left|y_{h}(t)\right|^{2} d t=\frac{e^{2 h T}-1}{2 h}\left|e^{a h}-1\right|^{2} .
$$

Since

$$
\int_{0}^{T}\left|f_{h}(t)\right|^{2} d t=\frac{e^{2 h T}-1}{2 h}
$$

the integral

$$
\int_{0}^{T}\left\{\gamma^{2}\left|f_{h}(t)\right|^{2}-\left|y_{h}(t)\right|^{2}\right\} d t
$$

converges to minus infinity for every $\gamma \geq 0$ when $h>0$ is sufficiently large (dependent on γ).

Problem 1.4

A feedback design setup consists of a heat source supplying a controlled AMOUNT $f=f(t)$ OF HEAT TO ONE END OF A HOMOGENEOUS BEAM, AND A SENSOR measuring the temperature $y=y(t)$ at the other end of the beam. The DISTRIBUTION $v=v(t, \theta)$ OF TEMPERATURE ALONG THE NORMALIZED LENGTH OF THE BEAM (FROM ONE END AT $\theta=0$ TO THE OTHER END AT $\theta=1$) IS DESCRIBED BY THE HEAT EQUATION

$$
\frac{d v(t, \theta)}{d t}=\frac{d^{2} v(t, \theta)}{d \theta^{2}}
$$

WITH BOUNDARY CONDITIONS

$$
\left.\frac{d v(t, \theta)}{d \theta}\right|_{\theta=0}=-f(t),\left.\quad \frac{d v(t, \theta)}{d \theta}\right|_{\theta=1}=0
$$

A proportional feedback

$$
f(t)=K(r(t)-y(t))=K(r(t)-v(t, 1)),
$$

WHERE $r=r(t)$ IS THE REFERENCE INPUT (THE DESIRED TEMPERATURE AT THE $\theta=1$ END OF THE BEAM) IS PROPOSED TO CONTROL $y(t)$.

It is expected that using a larger value of the feedback gain K will RESULT IN A FASTER CLOSED LOOP RESPONSE. ON THE OTHER HAND, USING A VALUE of K which is too large will destabilize the feedback system. To predict THE CLOSED LOOP BEHAVIOR, A REDUCED MODEL OF THE TRUE SYSTEM IS PROPOSED, based on replacing the original PDE with an approximation \hat{G}_{n} of order $n-1$:

$$
\begin{aligned}
\dot{v}_{1} & =n^{2}\left(v_{2}-v_{1}\right)+n f, \\
\dot{v}_{k} & =n^{2}\left(v_{k-1}+v_{k+1}-2 v_{k}\right), \quad(k=2, \ldots, n-2) \\
\dot{v}_{n-1} & =n^{2}\left(v_{n-2}-v_{n-1}\right), \\
y & =v_{n-1},
\end{aligned}
$$

where $n>3$ is an integer parameter. Here it is expected that

$$
\begin{aligned}
v_{k}(t) & \approx v(t, k / n) \\
v_{1}(t)+f(t) / n & \approx v(t, 0) \\
v_{n-1}(t) & \approx v(t, 1)
\end{aligned}
$$

(a) For all n, find matrices A, B, C, D of the state space model of the approximating system \hat{G}_{n}, ASSUMING THAT its state is

$$
x(t)=\left[\begin{array}{c}
v_{1}(t) \\
v_{2}(t) \\
\vdots \\
v_{n-1}(t)
\end{array}\right] .
$$

We have

$$
A=n^{2}\left[\begin{array}{cccccc}
-1 & 1 & 0 & \ldots & 0 & 0 \\
1 & -2 & 1 & & & \vdots \\
0 & 1 & -2 & & & \\
& & & \ddots & & \\
\vdots & & & & -2 & 1 \\
0 & \ldots & & 0 & 1 & -1
\end{array}\right], B=\left[\begin{array}{c}
n \\
0 \\
\vdots \\
\\
0
\end{array}\right], C=\left[\begin{array}{llll}
0 & \ldots & 0 & 1
\end{array}\right], D=0 .
$$

Here is a MATLAB function generating the state space model:

```
function Gn=ps14a_6242_2004(n)
% function Gn=ps14a_6242_2004(n)
%
% solves Problem 1.4(a) from 6.242/2004
n2=n^2;
A=toeplitz([-2*n2;n2;zeros(n-3,1)]);
A (1,1)=-n2;
A(n-1,n-1)=-n2;
B=[n;zeros(n-2,1)];
C=[zeros(1,n-2) 1];
Gn=ss(A,B,C,0);
```

(b) For $n=4,10,100$ Find (APPROXIMATELY) THE MAXIMAL $K_{0}>0$ SUCH THAT \hat{G}_{n} IS STABILIZED BY THE FEEDBACK $f(t)=-K y(t)$ FOR ALL $K \in\left(0, K_{0}\right)$.

The control system toolbox function margin.m can do the job, but it gets confused when n reaches the 100 level. This software glitch can be fixed by working with re-scaled A, B. More precisely dividing A by n^{2} and dividing B by n reduces the gain margin by a factor of n. The MATLAB code is shown below.

```
function g=ps14b_6242_2004(n)
% function g=ps14b_6242_2004(n)
%
% gain margin calculation for Problem 1.4(b) in 6.242/2004
[A,B,C]=ssdata(ps14a_6242_2004(n)); % get A,B,C
A=A/(n^2); % re-scale
B=B/n;
g=n*margin(ss(A,B,C,0)); % calculate the margin
```

The resulting gain margin is (approximately) 48.0 for $n=4,20.9$ for $n=10$, and 17.9 for $n=100$.
(c) Find an analytical expression for the transfer function $G=G(s)$ of THE ORIGINAL SYSTEM.

For a fixed $s>0$, and for $f(t)=e^{s t}$, the "steady state" response is to be given by $v(t, \theta)=u(\theta) e^{s t}$, in which case $G(s)=u(1)$ is the desired transfer function from f to y. Substituting the expression for v into the PDE yields an parameterized ODE for $u=u(\theta)$:

$$
\ddot{u}(\theta)=\operatorname{su}(\theta), \dot{u}(0)=1, \dot{u}(1)=0 .
$$

Solving this ODE yields

$$
u(\theta)=-\frac{1}{\sqrt{s}} \frac{e^{(\theta-1) \sqrt{s}}-e^{-(\theta-1) \sqrt{s}}}{e^{-\sqrt{s}}-e^{\sqrt{s}}}
$$

hence

$$
G(s)=\frac{2}{\sqrt{s}\left(e^{\sqrt{s}}-e^{-\sqrt{s}}\right)}
$$

(d) Find analytically the constant $\rho=\rho_{n}$ SUch that the difference $G-$ $\rho_{n} \hat{G}_{n}$ Has no unstable poles. CalCUlate (approximately) the H-Infinity NORM OF $G-\rho_{n} \hat{G}_{n}$ FOR $n=4,10,100$.

Matrix A is symmetric. Hence there exists an orthogonal basis in \mathbf{R}^{n-1} consisting of eigenvectors v_{k} of A, i.e. $A v_{k}=\lambda_{k} v_{k}$, and $v_{i}^{\prime} v_{k}=0$ for $i \neq k$. One eigenvector of A is easy to guess from the physics of the setup: any constant temperature distribution is an equilibrium when $f \equiv 0$. This leads to

$$
e=\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right]
$$

as an eigenvector of A : $A e=0$. hence, one can think that $v_{1}=e$ and $\lambda_{1}=0$. Since

$$
x^{\prime} A x=-n^{2} \sum_{k=1}^{n}-2\left(x_{k}-x_{k+1}\right)^{2}
$$

is non-negative only when $x=e q$ for some $q \in \mathbf{R}, \lambda_{k}<0$ for $k=2, \ldots, n-1$.
Let

$$
B=\sum_{i=1}^{n-1} v_{i} q_{i}
$$

be the decomposition of B as a linear combination of the eigenvectors of A. Then

$$
G_{n}(s)=\sum_{i=1}^{n-1} \frac{q_{i} C v_{i}}{s-\lambda_{i}}
$$

and hence the unstable part $G_{n}^{-}(s)$ of $G_{n}(s)$ is given by

$$
G_{n}^{-}(s)=\frac{q_{1} C v_{1}}{s}
$$

Taking into account that

$$
\lim _{s \rightarrow 0} s G(s)=1,
$$

the coefficient ρ_{n} must be equal to $1 / q_{1} C v_{1}$. Since v_{2}, \ldots, v_{n-1} are orthogonal to $v_{1}=e$, it is sufficient to represent B as $B=q_{1} e+B_{\perp}$, where B_{\perp} is orthogonal to e.

Since

$$
B_{\perp}=B-q_{1} e=\left[\begin{array}{c}
n-q_{1} \\
-q_{1} \\
\vdots \\
-q_{1}
\end{array}\right]
$$

this yields

$$
n-q_{1}-(n-2) q_{1}=0, \text { i.e. } q_{1}=\frac{n}{n-1} .
$$

Hence

$$
\rho_{n}=\frac{n-1}{n} .
$$

The following MATLAB code calculates the H-Infinity approximation error

```
function [g,rGns]=ps14d_6242_2004(n)
% function [g,rGns]=ps14d_6242_2004(n)
%
% H-Infinity error calculation for Problem 1.4(d) in 6.242/2004
N=10000; % number of samples
rGn=((n-1)/n)*ps14a_6242_2004(n); % reduced model
w=(1:N)'*100/N; % frequency samples
sqrts=((1+j)/sqrt(2))*sqrt(w); % sqrt(s) samples
rGns=freqresp(rGn,w); % rho(n)*Gn samples
rGns=squeeze(rGns);
Gs=2./(sqrts.*(exp(sqrts)-exp(-sqrts))); % G samples
g=max(abs(rGns-Gs));
close(gcf) % a graphic sanity check
subplot(2,1,1); plot(w,real(rGns),w,real(Gs)); grid
subplot(2,1,2); plot(w,imag(rGns)+1./w,w,imag(Gs)+1./w); grid
```

The error is bounded by 0.09 for $n=4,0.04$ for $n=10$, and 0.004 for $n=100$.
(e) Use the small gain theorem and the Results from (a), (b), and (d) to estimate the maximal K_{0} SUCH that G is stabilized by the feedback $f(t)=-K y(t)$ FOR ALL $K \in\left(0, K_{0}\right)$.
G is stabilized by the feedback $f(t)=-K y(t)$ for all $K \in\left(0, K_{0}\right)$ if and only if G is stabilized by the feedback $f(t)=-K_{1} y(t)$ for some $K_{1} \in\left(0, K_{0}\right)$, and $G(j \omega) \notin\left(-\infty,-K_{0}^{-1}\right)$ for all $\omega \in \mathbf{R}$.

To check stability for some $K_{1} \in\left(0, K_{0}\right)$, form the feedback interconnection of G_{n} and K_{1} (transfer function $G_{K}=K_{1} /\left(1+K_{1} \rho_{n} G_{n}\right)$), check its stability, and then check that the product of the H-Infinity norms $\left\|G_{K}\right\|_{\infty}$ and $\left\|G-\rho_{n} G_{n}\right\|_{\infty}$ is less than 1.
To find the largest $K_{0}>0$ such that $G(j \omega) \notin\left(-\infty,-K_{0}^{-1}\right)$ for all $\omega \in \mathbf{R}$, find the smallest real y which is within the $\left\|G-\rho_{n} G_{n}\right\|_{\infty}$ distance from the Nyquist plot of G_{n}.
The following MATLAB code does the calculations.

```
function K0=ps14e_6242_2004(n)
% function K0=ps14e_6242_2004(n)
%
% gain margin estimation for Problem 1.4(e) in 6.242/2004
[g,rGns]=ps14d_6242_2004(n);
rGn=((n-1)/n)*ps14a_6242_2004(n); % reduced model
K1=1; % some feedback gain
GK1=K1/(1+K1*rGn); % closed loop
[z,p,k]=zpkdata(GK1); % closed loop poles
sm=max(real(p{1}));
fprintf('\nStability margin: %f',sm);
sg=norm(GK1,Inf)*g;
fprintf('\nSmall gain margin: %f',sg);
if (sm<0)&(sg<1), % stability check
    fprintf('\nNominal stabilty established');
    rGns=rGns(abs(imag(rGns))<=g);
    y=min(real(rGns)-sqrt(g`2-imag(rGns).^2));
    K0=-1/y;
else
    fprintf('\nNominal stabilty not established');
end
```

Using $n=100$ yields $K_{0}=16.5$ as the lower bound for the gain margin of G.
(f) Use the Bode plot of G to check accuracy of the result from (e).

The calculation checks for a sign change in the samples of the imaginary part of
$G(j \omega)$, and uses the minimum y of the real part of $G(j \omega)$ at those samples to define $K_{0}=-1 / y$.

```
function K0=ps14f_6242_2004(N)
% function K0=ps14f_6242_2004(N)
%
% gain margin estimation for Problem 1.4(f) in 6.242/2004
w=(1:N)'*50/N; % frequency samples
sqrts=((1+j)/sqrt(2))*sqrt(w); % sqrt(s) samples
Gs=2./(sqrts.*(exp(sqrts)-exp(-sqrts))); % G samples
ir=imag(Gs);
ir=ir(1:N-1).*ir(2:N);
y=min(real(Gs(ir<=0)));
K0=-1/y;
close(gcf)
subplot(2,1,1); plot(w,real(Gs),w,repmat(y,N,1)); grid
subplot(2,1,2); plot(w,imag(Gs)./max(0.1,abs(imag(Gs)))); grid
```

The resulting gain margin is 17.79.

[^0]: *(C)A. Megretski, 2004
 ${ }^{1}$ Version of October 1, 2004.

