Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science

6.242, Fall 2004: MODEL REDUCTION -~

Problem set 1 solutions!

Problem 1.1

FOR ALL VALUES OF PARAMETER a (- R, FIND THE ORDER OF THE LTI SYSTEM WITH
TRANSFER MATRIX
1 1 1
H(s) = [

s+1]1 a (1.1)

Optional: WHAT IS THE RELATION BETWEEN THE ORDER OF H(s) = M/(s+ 1) AND
THE RANK OF MATRIX M?

The order of system H(s) = M/(s+ 1) equals the rank of M. In particular, for (1.1),
the order is 2 when a # 1 and 1 when a = 1.

To prove the statement, let n be the rank of M. Then M = FL, where F, L are
real matrices of rank n and of dimensions m-by-n and n-by-k respectively. A state space
model of H with n states is given by

t=—-x+ Lf, y=Fux.
Since both controllability matrix

M=[L —-L L ...]
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and observability matrix

have rank n, the state space model is minimal, and hence the order of H equals n.

Problem 1.2

LTI SYSTEM WITH IMPULSE RESPONSE

g9(t) = u(t) —u(t = 1)

IS APPROXIMATED BY THE FIRST ORDER SYSTEM WITH TRANSFER FUNCTION G/(s) =
1/(1+0.5s). FIND (APPROXIMATELY) THE H-INFINITY NORM OF THE APPROXIMATION
ERROR SYSTEM.

The transfer function of the original system is given by

_1—6_S

S

G(s)

A simple-minded algorithm for numerical calculation of |G — G||o can be based on eval-

N

uating |G (jw) — G(jw)| at
w=Q/N,2Q/N,3Q/N, ...

To check the accuracy of the algorithm, note that
dG (jw)/dw| < 1, [dG(jw)/dw| < 0.5 ¥ w € R,
and )
GUw)l <2/Q, |Gw)| <2/Q] ¥
Hence the error from sampling does not exceed

3 0 3Q
2 2N 4N’
and the error from using a finite frequency range does not exceed

2 2 4

oo



The total accuracy (in the case of precise arithmetic) would be

4 3Q<2\/§

QTIN SN

which is maximized at = 4/N//3.
The actual calculation is performed by the following MATLAB function.

function E=ps12_6242_2004(N)

% function E=ps12_6242_2004(N)

o

% estimates H-Infinity norm of (1-exp(-s))/s-1/(1+0.5s)
% larger N means better quality of estimation

if nargin<l, N=10000; end % default number of samples
W=4*sqrt (N/3); % optimal W

e=8/W; % error bound

w=(1:N)*W/N; % w-samples

s=]j*w; % s—samples
G=(1-exp(-s))./s; % G-hamples
Ghat=1./(1+0.5%s) ; % Ghat-samples
E=max(abs(G-Ghat)); % calculated H-Infinity norm
fprintf (’\nThe norm is between %f and %f\n’,E-e,E+e);
close(gct)

subplot(2,1,1); plot(w,real(G),w,real(Ghat)); grid
subplot(2,1,2); plot(w,imag(G),w,imag(Ghat)); grid

The modeling error norm turns out to be about 0.3957.

Problem 1.3

FOR ALL VALUES OF PARAMETER a € R, FIND L2 GAIN OF SYSTEM

f@) = y(t) = f)] = f(t —a).

The answer is 2 for ¢ > 0 and oo for a < 0.



To show that the gain is not smaller than 2, consider the input fy(t) = —1, producing
the output yo(t) = 2. Since every v > 0 for which the integrals

/O (PP — IOyt = T+ — 4)

are bounded from below as T — 400 must satisfy v > 2, we conclude that the L2 gain
of the system is not smaller than 2.
To show that that gain is not larger than 2 for a > 0, note that

1A+ fol? <2041+ | f2)

for all real numbers fi, fo, and hence

/0 (F@)] — F(t— a)Pdt < 2 / F(0)de + 2 / (= a)dt

0 T
<2 [ Jpwpdeea [ Iropar
Therefore .
/0 (A1fo®)? — luo(t) e

is bounded from below by the constant

0
2 / ()R,

which does not depend on T'. Hence L2 gain is not larger than 2 for a > 0.
Finally, to show that the gain is infinite for a < 0, consider the input

e, t>0,

where h > 0 is a parameter. Then, for ¢ > 0, the corresponding output y = y(t) satisfies

lyn| > €"le — 1

Y

and hence

T ) M1 ,
Hfdt = ——— e — 1|°.
| mopa = e 1)



Since
2T 1

T ) .
/0 |fu(t)|[7dt = 5

/0 (PO — [y (6) 2yt

converges to minus infinity for every v > 0 when h > 0 is sufficiently large (dependent on
7).

the integral

Problem 1.4

A FEEDBACK DESIGN SETUP CONSISTS OF A HEAT SOURCE SUPPLYING A CONTROLLED
AMOUNT f = f(t) OF HEAT TO ONE END OF A HOMOGENEOUS BEAM, AND A SENSOR
MEASURING THE TEMPERATURE y = y(t) AT THE OTHER END OF THE BEAM. THE
DISTRIBUTION v = v(t,6) OF TEMPERATURE ALONG THE NORMALIZED LENGTH OF THE
BEAM (FROM ONE END AT §# = (0 TO THE OTHER END AT 6 = 1) IS DESCRIBED BY THE

HEAT EQUATION
du(t,0)  d*v(t,0)

da  do?
WITH BOUNDARY CONDITIONS
dv(t, 6) B du(t, 0) B
B2 A7 M

6=0 =1

A PROPORTIONAL FEEDBACK

f(t) = K(r(t) —y(t)) = K(r(t) —v(t, 1)),
WHERE 7 = r(t) IS THE REFERENCE INPUT (THE DESIRED TEMPERATURE AT THE 6 = 1
END OF THE BEAM) IS PROPOSED TO CONTROL y(t).

IT 1S EXPECTED THAT USING A LARGER VALUE OF THE FEEDBACK GAIN K WILL
RESULT IN A FASTER CLOSED LOOP RESPONSE. ON THE OTHER HAND, USING A VALUE
OF K WHICH IS TOO LARGE WILL DESTABILIZE THE FEEDBACK SYSTEM. TO PREDICT
THE CLOSED LOOP BEHAVIOR, A REDUCED MODEL OF THE TRUE SYSTEM IS PROPOSED,
BASED ON REPLACING THE ORIGINAL PDE WITH AN APPROXIMATION (3, OF ORDER
n—1:

v = n*(va —v1) +nf,
o = nP(vp_1 + vk —20), (k=2,...,n—2)
r[]n—l = nz(vn—2 - Un—l)v

Yy = Up—1,



WHERE n > 3 IS AN INTEGER PARAMETER. HERE IT IS EXPECTED THAT

we(t) =~ v(t,k/n),
vi(t) + f(t)/n v(t,0),
Un_1<t) ~ ’U(t, 1)

Q

(a) FOR ALL n, FIND MATRICES A, B,C,D OF THE STATE SPACE MODEL OF THE
APPROXIMATING SYSTEM (,,, ASSUMING THAT ITS STATE IS

v (2)
Vg (t
=]
Un_l(t)
We have
(-1 1 0 0 0 ] R
1 -2 1 0
1 -2
A =n? ., B= ,C=1[0 0 1], D=0
: -2 1
0. 0 1 —1| | 0]

Here is a MATLAB function generating the state space model:

function Gn=pslda_6242_2004(n)

% function Gn=psida_6242_2004(n)

h

% solves Problem 1.4(a) from 6.242/2004

n2=n"2;
A=toeplitz([-2*n2;n2;zeros(n-3,1)]1);
A(1,1)=-n2;

A(n-1,n-1)=-n2;
B=[n;zeros(n-2,1)];
C=[zeros(1,n-2) 1];
Gn=ss(A,B,C,0);



(b)

FOrR n = 4,10,100 FIND (APPROXIMATELY) THE MAXIMAL K, > 0 SUCH THAT
G, 1S STABILIZED BY THE FEEDBACK f(t) = —Ky(t) FOR ALL K € (0, Kj).

The control system toolbox function margin.m can do the job, but it gets confused
when n reaches the 100 level. This software glitch can be fixed by working with
re-scaled A, B. More precisely dividing A by n? and dividing B by n reduces the
gain margin by a factor of n. The MATLAB code is shown below.

function g=psi4b_6242_2004(n)

% function g=ps14b_6242_2004(n)

h

% gain margin calculation for Problem 1.4(b) in 6.242/2004

[A,B,C]l=ssdata(psida_6242_2004(n)); % get A,B,C

A=A/ (n"2); % re-scale

B=B/n;

g=n*margin(ss(A,B,C,0)); % calculate the margin

The resulting gain margin is (approximately) 48.0 for n = 4, 20.9 for n = 10, and
17.9 for n = 100.

FIND AN ANALYTICAL EXPRESSION FOR THE TRANSFER FUNCTION G = G(s) OF
THE ORIGINAL SYSTEM.

For a fixed s > 0, and for f(t) = ¥, the “steady state” response is to be given by
v(t,0) = u(f)e, in which case G(s) = u(1) is the desired transfer function from f
to y. Substituting the expression for v into the PDE yields an parameterized ODE
for u = u(0):

Solving this ODE yields

hence




(d) FIND ANALYTICALLY THE CONSTANT p = p, SUCH THAT THE DIFFERENCE G —
pnGp HAS NO UNSTABLE POLES. CALCULATE (APPROXIMATELY ) THE H-INFINITY
NORM OF G — p,G,, FOR n = 4,10, 100.

Matrix A is symmetric. Hence there exists an orthogonal basis in R" ! consisting of
eigenvectors vy, of A, i.e. Avp = A\yvg, and vjvg, = 0 for i # k. One eigenvector of A is
easy to guess from the physics of the setup: any constant temperature distribution
is an equilibrium when f = 0. This leads to

as an eigenvector of A: Ae = 0. hence, one can think that v; = e and \; = 0. Since
¥’ Ax = —n? Z —2(xf — Tp41)”
k=1

is non-negative only when x = eq for some ¢ € R, Ay <O for k=2,...,n—1.

Let

n—1

B = Z'Ui%'

i=1

be the decomposition of B as a linear combination of the eigenvectors of A. Then

Z"‘l 4Cv;
Gn(S) = - - 9
=1 5 Ai

and hence the unstable part G, (s) of G, (s) is given by

C
Gr(s) = T
s
Taking into account that
lirr(l) sG(s) =1,
the coefficient p, must be equal to 1/¢;Cv;. Since vy, ..., v,_1 are orthogonal to

v = e, it is sufficient to represent B as B = ¢1e + B, where B, is orthogonal to e.



Since
n—aq
—
BJ_ =D - g€ = . 5
—q1

this yields
n

n—1

n—qg—(Mn—-2¢ =0, ie. ¢ =

Hence
n—1
Pn = .

n
The following MATLAB code calculates the H-Infinity approximation error

function [g,rGns]=ps14d_6242_2004(n)

% function [g,rGns]=ps14d_6242_2004(n)

h

%» H-Infinity error calculation for Problem 1.4(d) in 6.242/2004

N=10000; % number of samples
rGn=((n-1) /n)*psida_6242_2004(n) ; % reduced model
w=(1:N)’*100/N; % frequency samples
sqrts=((1+j) /sqrt(2))*sqrt(w) ; % sqrt(s) samples
rGns=freqresp(rGn,w) ; % rho(n)*Gn samples
rGns=squeeze (rGns) ;

Gs=2./(sqrts.*(exp(sqrts)-exp(-sqrts))); % G samples

g=max (abs (rGns-Gs)) ;

close(gct) % a graphic sanity check

subplot(2,1,1); plot(w,real(rGns),w,real(Gs)); grid
subplot(2,1,2); plot(w,imag(rGns)+1./w,w,imag(Gs)+1./w); grid

The error is bounded by 0.09 for n = 4, 0.04 for n = 10, and 0.004 for n = 100.

USE THE SMALL GAIN THEOREM AND THE RESULTS FROM (A),(B), AND (D) TO
ESTIMATE THE MAXIMAL K, SUCH THAT G IS STABILIZED BY THE FEEDBACK
f(t) = —Ky(t) FOrR ALL K € (0, K,).

G is stabilized by the feedback f(t) = —Ky(t) for all K € (0, K,) if and only
if G is stabilized by the feedback f(t) = —Kjy(t) for some K; € (0,K,), and
G(jw) & (—oo, =K' for all w € R.
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To check stability for some K; € (0, Ky), form the feedback interconnection of G,
and K; (transfer function Gx = K;/(1 + K1p,G,)), check its stability, and then
check that the product of the H-Infinity norms |Gkl and |G — p,Gylleo is less
than 1.

To find the largest Ky > 0 such that G(jw) & (—oo, —K;*') for all w € R, find the
smallest real y which is within the |G — p,G, || distance from the Nyquist plot of
Gh.

The following MATLAB code does the calculations.

function KO=psl4e_6242_2004(n)

% function KO=pslde_6242_2004(n)

h

% gain margin estimation for Problem 1.4(e) in 6.242/2004
[g,rGns]=ps14d_6242_2004(n) ;

rGn=((n-1) /n)*psida_6242_2004(n) ; % reduced model
K1=1; % some feedback gain
GK1=K1/ (1+K1*rGn) ; % closed loop
[z,p,k]=zpkdata(GK1); % closed loop poles

sm=max (real (p{1}));

fprintf (’\nStability margin: %f’,sm);

sg=norm(GK1, Inf) *g;

fprintf (’\nSmall gain margin: %f’,sg);

if (sm<0)&(sg<1), % stability check
fprintf (’\nNominal stabilty established’);
rGns=rGns (abs (imag (rGns) ) <=g) ;
y=min(real (rGns)-sqrt(g~2-imag(rGns)."2));
KO=-1/y;

else
fprintf (’\nNominal stabilty not established’);

end

Using n = 100 yields Ky = 16.5 as the lower bound for the gain margin of G.
USE THE BODE PLOT OF G TO CHECK ACCURACY OF THE RESULT FROM (E).

The calculation checks for a sign change in the samples of the imaginary part of
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G(jw), and uses the minimum y of the real part of G(jw) at those samples to define

function KO=ps14f_6242_2004(N)
% function KO=ps14f_6242_2004(N)

b

% gain margin estimation for Problem 1.4(f) in 6.242/2004
w=(1:N) ’*50/N; % frequency samples
sqrts=((1+j) /sqrt(2))*sqrt(w) ; % sqrt(s) samples
Gs=2./(sqrts.*(exp(sqrts)-exp(-sqrts))); % G samples

ir=imag(Gs);

ir=ir(1:N-1) .*ir(2:N);

y=min(real(Gs(ir<=0)));

KO=-1/y;

close(gct)

subplot(2,1,1); plot(w,real(Gs),w,repmat(y,N,1)); grid
subplot(2,1,2); plot(w,imag(Gs)./max(0.1,abs(imag(Gs)))); grid

The resulting gain margin is 17.79.



