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Problem 1.1

For all values of parameter a ∈ R, find the order of the LTI system with
transfer matrix

H(s) =
1

s + 1

[

1 1
1 a

]

. (1.1)

Optional: what is the relation between the order of H(s) = M/(s + 1) and
the rank of matrix M?

The order of system H(s) = M/(s + 1) equals the rank of M . In particular, for (1.1),
the order is 2 when a 6= 1 and 1 when a = 1.

To prove the statement, let n be the rank of M . Then M = FL, where F, L are
real matrices of rank n and of dimensions m-by-n and n-by-k respectively. A state space
model of H with n states is given by

ẋ = −x + Lf, y = Fx.

Since both controllability matrix

Mc =
[

L −L L . . .
]

∗ c©A. Megretski, 2004
1Version of October 1, 2004.



2

and observability matrix

Mo =











F
−F
F
...











have rank n, the state space model is minimal, and hence the order of H equals n.

Problem 1.2

LTI system with impulse response

g(t) = u(t) − u(t − 1)

is approximated by the first order system with transfer function Ĝ(s) =
1/(1+0.5s). Find (approximately) the H-Infinity norm of the approximation
error system.

The transfer function of the original system is given by

G(s) =
1 − e−s

s
.

A simple-minded algorithm for numerical calculation of ‖G− Ĝ‖∞ can be based on eval-
uating |G(jω) − Ĝ(jω)| at

ω = Ω/N, 2Ω/N, 3Ω/N, . . .

To check the accuracy of the algorithm, note that

|dG(jω)/dω| ≤ 1, |dĜ(jω)/dω| ≤ 0.5 ∀ ω ∈ R,

and
|G(jω)| < 2/Ω, |Ĝ(jω)| < 2/Ω| ∀

Hence the error from sampling does not exceed

3

2
· Ω

2N
=

3Ω

4N
,

and the error from using a finite frequency range does not exceed

2

Ω
+

2

Ω
=

4

Ω
.
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The total accuracy (in the case of precise arithmetic) would be

4

Ω
+

3Ω

4N
≤ 2

√
3√

N
,

which is maximized at Ω = 4
√

N/
√

3.
The actual calculation is performed by the following MATLAB function.

function E=ps12_6242_2004(N)

% function E=ps12_6242_2004(N)

%

% estimates H-Infinity norm of (1-exp(-s))/s-1/(1+0.5s)

% larger N means better quality of estimation

if nargin<1, N=10000; end % default number of samples

W=4*sqrt(N/3); % optimal W

e=8/W; % error bound

w=(1:N)*W/N; % w-samples

s=j*w; % s-samples

G=(1-exp(-s))./s; % G-hamples

Ghat=1./(1+0.5*s); % Ghat-samples

E=max(abs(G-Ghat)); % calculated H-Infinity norm

fprintf(’\nThe norm is between %f and %f\n’,E-e,E+e);

close(gcf)

subplot(2,1,1); plot(w,real(G),w,real(Ghat)); grid

subplot(2,1,2); plot(w,imag(G),w,imag(Ghat)); grid

The modeling error norm turns out to be about 0.3957.

Problem 1.3

For all values of parameter a ∈ R, find L2 gain of system

f(t) 7→ y(t) = |f(t)| − f(t − a).

The answer is 2 for a ≥ 0 and ∞ for a < 0.
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To show that the gain is not smaller than 2, consider the input f0(t) ≡ −1, producing
the output y0(t) ≡ 2. Since every γ ≥ 0 for which the integrals

∫

T

0

{γ2|f0(t)|2 − |y0(t)|2}dt = T (γ2 − 4)

are bounded from below as T → +∞ must satisfy γ ≥ 2, we conclude that the L2 gain
of the system is not smaller than 2.

To show that that gain is not larger than 2 for a ≥ 0, note that

|f1 + f2|2 ≤ 2(|f1|2 + |f2|2)

for all real numbers f1, f2, and hence

∫

T

0

|(|f(t)| − f(t − a))|2dt ≤ 2

∫

T

0

|f(t)|2dt + 2

∫

T

0

|f(t − a)|2dt

≤ 2

∫ 0

−a

|f(t)|2dt + 4

∫

T

0

|f(t)|2dt.

Therefore
∫

T

0

{4|f0(t)|2 − |y0(t)|2}dt

is bounded from below by the constant

2

∫ 0

−a

|f(t)|2dt,

which does not depend on T . Hence L2 gain is not larger than 2 for a ≥ 0.
Finally, to show that the gain is infinite for a < 0, consider the input

fh(t) = ehtu(t) =

{

eht, t ≥ 0,
0, t < 0,

where h > 0 is a parameter. Then, for t ≥ 0, the corresponding output y = yh(t) satisfies

|yh| ≥ eht|eah − 1|,

and hence
∫

T

0

|yh(t)|2dt =
e2hT − 1

2h
|eah − 1|2.
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Since
∫

T

0

|fh(t)|2dt =
e2hT − 1

2h
,

the integral
∫

T

0

{γ2|fh(t)|2 − |yh(t)|2}dt

converges to minus infinity for every γ ≥ 0 when h > 0 is sufficiently large (dependent on
γ).

Problem 1.4

A feedback design setup consists of a heat source supplying a controlled
amount f = f(t) of heat to one end of a homogeneous beam, and a sensor
measuring the temperature y = y(t) at the other end of the beam. The
distribution v = v(t, θ) of temperature along the normalized length of the
beam (from one end at θ = 0 to the other end at θ = 1) is described by the
heat equation

dv(t, θ)

dt
=

d2v(t, θ)

dθ2

with boundary conditions

dv(t, θ)

dθ

∣

∣

∣

∣

θ=0

= −f(t),
dv(t, θ)

dθ

∣

∣

∣

∣

θ=1

= 0.

A proportional feedback

f(t) = K(r(t) − y(t)) = K(r(t) − v(t, 1)),

where r = r(t) is the reference input (the desired temperature at the θ = 1
end of the beam) is proposed to control y(t).

It is expected that using a larger value of the feedback gain K will
result in a faster closed loop response. On the other hand, using a value
of K which is too large will destabilize the feedback system. To predict
the closed loop behavior, a reduced model of the true system is proposed,
based on replacing the original PDE with an approximation Ĝn of order
n − 1:

v̇1 = n2(v2 − v1) + nf,

v̇k = n2(vk−1 + vk+1 − 2vk), (k = 2, . . . , n − 2)

v̇n−1 = n2(vn−2 − vn−1),

y = vn−1,
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where n > 3 is an integer parameter. Here it is expected that

vk(t) ≈ v(t, k/n),

v1(t) + f(t)/n ≈ v(t, 0),

vn−1(t) ≈ v(t, 1).

(a) For all n, find matrices A, B, C, D of the state space model of the
approximating system Ĝn, assuming that its state is

x(t) =











v1(t)
v2(t)

...
vn−1(t)











.

We have

A = n2





















−1 1 0 . . . 0 0

1 −2 1
...

0 1 −2
. . .

... −2 1
0 . . . 0 1 −1





















, B =



















n
0
...

0



















, C =
[

0 . . . 0 1
]

, D = 0.

Here is a MATLAB function generating the state space model:

function Gn=ps14a_6242_2004(n)

% function Gn=ps14a_6242_2004(n)

%

% solves Problem 1.4(a) from 6.242/2004

n2=n^2;

A=toeplitz([-2*n2;n2;zeros(n-3,1)]);

A(1,1)=-n2;

A(n-1,n-1)=-n2;

B=[n;zeros(n-2,1)];

C=[zeros(1,n-2) 1];

Gn=ss(A,B,C,0);
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(b) For n = 4, 10, 100 find (approximately) the maximal K0 > 0 such that
Ĝn is stabilized by the feedback f(t) = −Ky(t) for all K ∈ (0, K0).

The control system toolbox function margin.m can do the job, but it gets confused
when n reaches the 100 level. This software glitch can be fixed by working with
re-scaled A, B. More precisely dividing A by n2 and dividing B by n reduces the
gain margin by a factor of n. The MATLAB code is shown below.

function g=ps14b_6242_2004(n)

% function g=ps14b_6242_2004(n)

%

% gain margin calculation for Problem 1.4(b) in 6.242/2004

[A,B,C]=ssdata(ps14a_6242_2004(n)); % get A,B,C

A=A/(n^2); % re-scale

B=B/n;

g=n*margin(ss(A,B,C,0)); % calculate the margin

The resulting gain margin is (approximately) 48.0 for n = 4, 20.9 for n = 10, and
17.9 for n = 100.

(c) Find an analytical expression for the transfer function G = G(s) of
the original system.

For a fixed s > 0, and for f(t) = est, the “steady state” response is to be given by
v(t, θ) = u(θ)est, in which case G(s) = u(1) is the desired transfer function from f
to y. Substituting the expression for v into the PDE yields an parameterized ODE
for u = u(θ):

ü(θ) = su(θ), u̇(0) = 1, u̇(1) = 0.

Solving this ODE yields

u(θ) = − 1√
s

e(θ−1)
√

s − e−(θ−1)
√

s

e−
√

s − e
√

s
,

hence

G(s) =
2√

s(e
√

s − e−
√

s)
.
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(d) Find analytically the constant ρ = ρn such that the difference G −
ρnĜn has no unstable poles. Calculate (approximately) the H-Infinity
norm of G − ρnĜn for n = 4, 10, 100.

Matrix A is symmetric. Hence there exists an orthogonal basis in Rn−1 consisting of
eigenvectors vk of A, i.e. Avk = λkvk, and v′

i
vk = 0 for i 6= k. One eigenvector of A is

easy to guess from the physics of the setup: any constant temperature distribution
is an equilibrium when f ≡ 0. This leads to

e =











1
1
...
1











as an eigenvector of A: Ae = 0. hence, one can think that v1 = e and λ1 = 0. Since

x′Ax = −n2
n

∑

k=1

−2(xk − xk+1)
2

is non-negative only when x = eq for some q ∈ R, λk < 0 for k = 2, . . . , n − 1.

Let

B =

n−1
∑

i=1

viqi

be the decomposition of B as a linear combination of the eigenvectors of A. Then

Gn(s) =
n−1
∑

i=1

qiCvi

s − λi

,

and hence the unstable part G−
n
(s) of Gn(s) is given by

G−
n
(s) =

q1Cv1

s
.

Taking into account that
lim
s→0

sG(s) = 1,

the coefficient ρn must be equal to 1/q1Cv1. Since v2, . . . , vn−1 are orthogonal to
v1 = e, it is sufficient to represent B as B = q1e + B⊥, where B⊥ is orthogonal to e.
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Since

B⊥ = B − q1e =











n − q1

−q1
...

−q1











,

this yields

n − q1 − (n − 2)q1 = 0, i.e. q1 =
n

n − 1
.

Hence

ρn =
n − 1

n
.

The following MATLAB code calculates the H-Infinity approximation error

function [g,rGns]=ps14d_6242_2004(n)

% function [g,rGns]=ps14d_6242_2004(n)

%

% H-Infinity error calculation for Problem 1.4(d) in 6.242/2004

N=10000; % number of samples

rGn=((n-1)/n)*ps14a_6242_2004(n); % reduced model

w=(1:N)’*100/N; % frequency samples

sqrts=((1+j)/sqrt(2))*sqrt(w); % sqrt(s) samples

rGns=freqresp(rGn,w); % rho(n)*Gn samples

rGns=squeeze(rGns);

Gs=2./(sqrts.*(exp(sqrts)-exp(-sqrts))); % G samples

g=max(abs(rGns-Gs));

close(gcf) % a graphic sanity check

subplot(2,1,1); plot(w,real(rGns),w,real(Gs)); grid

subplot(2,1,2); plot(w,imag(rGns)+1./w,w,imag(Gs)+1./w); grid

The error is bounded by 0.09 for n = 4, 0.04 for n = 10, and 0.004 for n = 100.

(e) Use the small gain theorem and the results from (a),(b), and (d) to
estimate the maximal K0 such that G is stabilized by the feedback
f(t) = −Ky(t) for all K ∈ (0, K0).

G is stabilized by the feedback f(t) = −Ky(t) for all K ∈ (0, K0) if and only
if G is stabilized by the feedback f(t) = −K1y(t) for some K1 ∈ (0, K0), and
G(jω) 6∈ (−∞,−K−1

0 ) for all ω ∈ R.
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To check stability for some K1 ∈ (0, K0), form the feedback interconnection of Gn

and K1 (transfer function GK = K1/(1 + K1ρnGn)), check its stability, and then
check that the product of the H-Infinity norms ‖GK‖∞ and ‖G − ρnGn‖∞ is less
than 1.

To find the largest K0 > 0 such that G(jω) 6∈ (−∞,−K−1
0 ) for all ω ∈ R, find the

smallest real y which is within the ‖G − ρnGn‖∞ distance from the Nyquist plot of
Gn.

The following MATLAB code does the calculations.

function K0=ps14e_6242_2004(n)

% function K0=ps14e_6242_2004(n)

%

% gain margin estimation for Problem 1.4(e) in 6.242/2004

[g,rGns]=ps14d_6242_2004(n);

rGn=((n-1)/n)*ps14a_6242_2004(n); % reduced model

K1=1; % some feedback gain

GK1=K1/(1+K1*rGn); % closed loop

[z,p,k]=zpkdata(GK1); % closed loop poles

sm=max(real(p{1}));

fprintf(’\nStability margin: %f’,sm);

sg=norm(GK1,Inf)*g;

fprintf(’\nSmall gain margin: %f’,sg);

if (sm<0)&(sg<1), % stability check

fprintf(’\nNominal stabilty established’);

rGns=rGns(abs(imag(rGns))<=g);

y=min(real(rGns)-sqrt(g^2-imag(rGns).^2));

K0=-1/y;

else

fprintf(’\nNominal stabilty not established’);

end

Using n = 100 yields K0 = 16.5 as the lower bound for the gain margin of G.

(f) Use the Bode plot of G to check accuracy of the result from (e).

The calculation checks for a sign change in the samples of the imaginary part of
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G(jω), and uses the minimum y of the real part of G(jω) at those samples to define
K0 = −1/y.

function K0=ps14f_6242_2004(N)

% function K0=ps14f_6242_2004(N)

%

% gain margin estimation for Problem 1.4(f) in 6.242/2004

w=(1:N)’*50/N; % frequency samples

sqrts=((1+j)/sqrt(2))*sqrt(w); % sqrt(s) samples

Gs=2./(sqrts.*(exp(sqrts)-exp(-sqrts))); % G samples

ir=imag(Gs);

ir=ir(1:N-1).*ir(2:N);

y=min(real(Gs(ir<=0)));

K0=-1/y;

close(gcf)

subplot(2,1,1); plot(w,real(Gs),w,repmat(y,N,1)); grid

subplot(2,1,2); plot(w,imag(Gs)./max(0.1,abs(imag(Gs)))); grid

The resulting gain margin is 17.79.


