Massachusetts Institute of Technology
 Department of Electrical Engineering and Computer Science
 6.242, Fall 2004: MODEL REDUCTION *

Problem set 2^{1}

Problem 2.1

The goal of this assignment is to test the degree of freedom available when deriving reduced models using a projection method. Consider the standard state space model with

$$
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad B=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad C=\left[\begin{array}{ll}
1 & 0
\end{array}\right], \quad D=0
$$

(transfer function $G(s)=1 / s^{2}$). A pair of projection matrices V and U of dimensions 2-by-1 and 1-by-2, respectively, satisfying the usual condition $U V=1$, would produce a reduced model with transfer function $\hat{G}(s)=k /(s-a)$. Decribe analytically the set of all possible pairs (a, k).

Problem 2.2

The goal of this assignment is to extend the results of Lecture 4 notes on moments matching. Consider state space models

$$
G:=\left(\begin{array}{c|c}
A & B \\
\hline C & D
\end{array}\right), \quad \hat{G}=\left(\begin{array}{c|c}
U A V & U B \\
\hline C V & D
\end{array}\right),
$$

where $U V=I_{r}$. Let $s_{0} \in \mathbf{C}$ be a complex number for which both matrices $s_{0} I_{n}-A$ and $s_{0} I_{r}-U A V$ are invertible. Assume that the columns of matrices $\left(s_{0} I_{n}-A\right)^{-k-1} B$

[^0]belong to the range of V for $k=0, \ldots, N_{V}$. In addition, assume that the rows of matrices $C\left(s_{0} I_{n}-A\right)^{-k-1}$ can be represented as linear combinations of the rows of U for $k=$ $0, \ldots, N_{U}$. Depending on the numbers N_{U} and N_{V} only, how many moments of $G(s)$ and $\hat{G}(s)$ are guaranteed to match at $s=s_{0}$ under these assumptions?
(a) Design a numerical experiment to supply you with data for making a hypotheses about the answer.
(b) Formulate the general answer and prove it formally.

Problem 2.3

The goal of this assignment is to apply the results of Lecture 4 on moments matching and stability preservation in projection based model reduction of a large mass/spring chain, modeled by the system of differential equations

$$
\begin{aligned}
M \ddot{x}_{1}(t)+B \dot{x}_{1}(t)+n^{2} K\left(2 x_{1}(t)-x_{2}(t)\right) & =f(t), \\
M \ddot{x}_{k}(t)+B \dot{x}_{k}(t)+n^{2} K\left(2 x_{k}(t)-x_{k+1}(t)-x_{k-1}(t)\right) & =0(k=2,3, \ldots, 2 n), \\
M \ddot{x}_{2 n+1}(t)+B \dot{x}_{2 n+1}(t)+n^{2} K\left(2 x_{2 n+1}(t)-x_{2 n}(t)\right) & =0, \\
y(t) & =x_{n+1}(t),
\end{aligned}
$$

where M, B, K are given positive constants, $n>0$ is a large integer, $x_{i}(t)$ is the (onedimensional) deflection of the i-th mass, and $n^{2} K$ is the spring coefficient of the spring connecting the i-th and the $i+1$-st mass, as well as the 1st and the last masses to fixed positions.
(a) Find matrices A, B, C, D (depending on $n, M, B, K)$ of a state space model of the system, using

$$
x(t)=\left[x_{0}(t) ; x_{1}(t) ; \ldots ; x_{2 n}(t) ; \dot{x}_{0}(t) ; \dot{x}_{1}(t) ; \ldots ; \dot{x}_{2 n}(t)\right]
$$

as the state vector.
(b) Find a matrix $P=P^{\prime}$ such that, for the state space model from (a) with $f \equiv 0$, $x(t)^{\prime} P x(t)$ is the sum of kinetic and potential energies of the system.
(c) For $M=1, B=0.2, K=4$, and $n=50$, compute numerically matrix V with 10 columns which form an orthonormal basis in the space of all linear combinations of vectors $A^{-k} B$ with $k=1,2 \ldots, 10$.
(d) For V defined in (c), compute numerically $U=\left(V^{\prime} P V\right)^{-1} V^{\prime} P$, and form the corresponding projection reduced system \hat{G}_{1}.
(e) For V defined in (c), and for $U=V^{\prime}$, compute numerically the corresponding projection reduced system \hat{G}_{2}.
(f) Use Bode plots to compare the quality of approximation of the original transfer function G by the reduced models \hat{G}_{1} and \hat{G}_{2}.

[^0]: *(CA. Megretski, 2004
 ${ }^{1}$ Version of September 22, 2004. Due September 29, 2004.

