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6.242, Fall 2004: MODEL REDUCTION ∗

Problem set 2 solutions1

Problem 2.1

The goal of this assignment is to test the degree of freedom available
when deriving reduced models using a projection method. Consider the
standard state space model with

A =

[

0 1
0 0

]

, B =

[

0
1

]

, C =
[

1 0
]

, D = 0

(transfer function G(s) = 1/s2). A pair of projection matrices V and U of
dimensions 2-by-1 and 1-by-2, respectively, satisfying the usual condition
UV = 1, would produce a reduced model with transfer function Ĝ(s) =
k/(s − a). Decribe analytically the set of all possible pairs (a, k).

The set consists of all pairs (a, k) such that 4ak ≤ 1.
To prove this, first note that a = u1v2 and k = u2v1, where the components of

U = [u1 u2] and V = [v1; v2] must satisfy

u1v1 + u2v2 = 1.

Let t = u1v1. Then

4ak = 4u1v2u2v1 = 4u1v1u2v2 = 4t(1 − t) ≤ 1.

∗ c©A. Megretski, 2004
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On the other hand, if 4ak ≤ 1 and a 6= 0 then ak = t(1 − t) for some t ∈ R, hence a
projection with

u1 = 1, v1 = t, v2 = a, u2 = (1 − t)/a

generates the pair (a, k). Finally, when a = 0, a projection with

u1 = 0, v1 = k, u2 = 1, v2 = 1

generates the pair (a, k).

Problem 2.2

The goal of this assignment is to extend the results of Lecture 4 notes
on moments matching. Consider state space models

G :=

(

A B
C D

)

, Ĝ =

(

UAV UB
CV D

)

,

where UV = Ir. Let s0 ∈ C be a complex number for which both matrices
s0In−A and s0Ir−UAV are invertible. Assume that the columns of matrices
(s0In − A)−k−1B belong to the range of V for k = 0, . . . , NV . In addition,
assume that the rows of matrices C(s0In − A)−k−1 can be represented as
linear combinations of the rows of U for k = 0, . . . , NU . Depending on the
numbers NU and NV only, how many moments of G(s) and Ĝ(s) are guaranteed

to match at s = s0 under these assumptions?

(a) Design a numerical experiment to supply you with data for making a
hypotheses about the answer.

One appropriate numerical experiment can be described as follows. For a given pair
of nonnegative integers NU , NV , generate a random number m > max{NU , NV }, to
become the order of the reduced system. Select randomly n ≫ 2 ∗m to become the
order of the original system. Generate random n-by-n matrix A, column n-vector
B, and a row n-vector C, as well as a complex number s0. Form matrices U0 and V0

of dimensions m-by-n and n-by-m respectively, such that the first NU rows of U0 are
C(s0I − A)−i−1 for i = 0, 1, . . . , NU , the first NV columns of V0 are (s0I − A)−i−1B
for i = 0, 1, . . . , NV , and the rest of rows/columns are generated randomly. Use
singular value decomposition to produce better conditioned matrices U, V such that
the row/columns spans of U and V are same as the row/column spans of U0 and
V0. Re-define U according to

U := (UV )−1U.
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(Theoretically, matrix UV may turn out to be non-invertible, but, for moderately
sized matrices, the probability of encountering such difficulty is small.)

The resulting MATLAB code ps22a 6242 2004.m is shown below.

function ps22a_6242_2004(nv,nu)

% function ps22a_6242_2004(nv,nu)

%

% reserach function for problem 2.2a

m=max(nu,nv)+ceil(3*rand); % dimension of the reduced system

n=2*m+30+ceil(30*rand); % randomized number of states

A=randn(n); % generate A,B,C

B=randn(n,1);

C=randn(1,n);

s0=randn+j*randn; % generate s0

Ai=inv(s0*eye(n)-A); % (s0I-A)^{-1}

U0=zeros(m,n); % to store U0=[C(s0I-A)^{-1};C(s0I-A)^{-2};...]

Ck=C;

for i=1:nu+1,

Ck=Ck*Ai;

U0(i,:)=Ck;

end

U0(nu+2:m,:)=randn(m-nu-1,n);

V0=zeros(n,m); % to store V0=[(s0I-A)^{-1}B;(s0I-A)^{-2}B;...]

Bk=B;

for i=1:nv+1,

Bk=Ai*Bk;

V0(:,i)=Bk;

end

V0(:,nv+2:m)=randn(n,m-nv-1);

[U,S]=svd(U0’,0);

[V,S]=svd(V0,0);

U=inv(U’*V)*U’;

A1=U*A*V;

B1=U*B;
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C1=C*V;

n1=size(A1,1);

N=2*(nu+nv+2);

e=zeros(1,N);

A1i=inv(s0*eye(n1)-A1);

Bk=B;

B1k=B1;

for i=1:N,

Bk=Ai*Bk;

B1k=A1i*B1k;

y(i)=C*Bk;

y1(i)=C1*B1k;

end

close(gcf)

bar(abs(y-y1)./(1+abs(y)));grid

(b) Formulate the general answer and prove it formally.

Running the code from (a) suggests that the first NU + NV + 2 moments are

matched. To prove this, let

Bi = (s0In−A)−iB (i = 0, 1, . . . , NV +1), Ci = C(s0In−A)−i (i = 0, 1, . . . , NU +1).

By construction,
Bi = V B̂i, Ci = ĈiU for i > 0.

As in the lecture notes, this implies

B̂i = (s0Im−Â)−iB̂ (i = 0, 1, . . . , NV +1), Ĉi = Ĉ(s0Im−Â)−i (i = 0, 1, . . . , NU +1).

Hence
CiBk = ĈiUV B̂k = ĈiB̂k

for
0 ≤ i ≤ NU + 1, 0 ≤ k ≤ k ≤ NV + 1, i + k > 0.

Since, for i + k > 0, CiBk and ĈiB̂k are the (i + k)-th moments of G and Ĝ at s0,
the proof is complete.
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Problem 2.3

The goal of this assignment is to apply the results of Lecture 4 on mo-
ments matching and stability preservation in projection based model re-
duction of a large mass/spring chain, modeled by the system of differen-
tial equations

Mẍ1(t) + Rẋ1(t) + n2K(2x1(t) − x2(t)) = f(t),

Mẍk(t) + Rẋk(t) + n2K(2xk(t) − xk+1(t) − xk−1(t)) = 0 (k = 2, 3, . . . , 2n),

Mẍ2n+1(t) + Rẋ2n+1(t) + n2K(2x2n+1(t) − x2n(t)) = 0,

y(t) = xn+1(t),

where M, R, K are given positive constants, n > 0 is a large integer, xi(t)
is the (one-dimensional) deflection of the i-th mass, and n2K is the spring
coefficient of the spring connecting the i-th and the i+1-st mass, as well
as the 1st and the last masses to fixed positions.

(a) Find matrices A, B, C, D (depending on n, M, R, K) of a state space model
of the system, using

x(t) = [x1(t); x2(t); . . . ; x2n+1(t); ẋ1(t); ẋ1(t); . . . ; ẋ2n+1(t)]

as the state vector.

The matrices have the form

A =

[

0 I2n+1

−γ −(R/M)I2n+1

]

, B =

[

0
b

]

, C =
[

c 0
]

,

where

γ =
n2K

M















2 −1 0 0
−1 2 −1 0

0 −1
...

...
. . .

0 0 . . . 2















, b =















1/M
0
0
...
0















,

c =
[

0 . . . 0 1 0 . . . 0
]

.
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(b) Find a matrix P = P ′ such that, for the state space model from (a)
with f ≡ 0, x(t)′Px(t) is the sum of kinetic and potential energies of
the system.

The kinetic energy of the i-th mass is Mẋ2
i
/2. The potential energy of the spring

connecting the i-th and (i + 1)-st mass is K(xi − xi+1)
2. The first and the last

springs have potential energies n2Kx2
1/2 and n2Kx2

2n+1/2 respectively. The total is
defined by

P =
M

2

[

γ 0
0 I2n+1

]

.

(c) For M = 1, R = 0.2, K = 4, and n = 50, compute numerically matrix
V with 10 columns which form an orthonormal basis in the space of
all linear combinations of vectors A−kB with k = 1, 2 . . . , 10.

(d) For V defined in (c), compute numerically U = (V ′PV )−1V ′P , and form
the corresponding projection reduced system Ĝ1.

(e) For V defined in (c), and for U = V ′, compute numerically the cor-
responding projection reduced system Ĝ2.

(f) Use Bode plots to compare the quality of approximation of the orig-
inal transfer function G by the reduced models Ĝ1 and Ĝ2.

The items (c)-(f) are done in MATLAB file ps23cdef 6242 2004.m, shown below.
The resulting approximations Ĝ1 and Ĝ2 turn out to be quite good in the low
frequency range, and get better as the number of moments matched increases.

function ps23cdef_6242_2004(n,m,M,R,K)

% function ps23cdef_6242_2004(n,m,M,R,K)

%

% Solves Problem 2.3, items (c)-(f)

if nargin<1, n=50; end

if nargin<2, m=10; end

if nargin<3, M=1; end

if nargin<4, R=0.2; end
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if nargin<5, K=4; end

g=(2*(n^2)*K/M)*toeplitz([ 2 -1 zeros(1,2*n-1)]);

In=eye(2*n+1);

On=zeros(2*n+1);

b=[1;zeros(2*n,1)];

c=[zeros(1,n) 1 zeros(1,n)];

A=[On In; -g -(R/M)*In];

B=[zeros(2*n+1,1/M);b];

C=[c zeros(1,2*n+1)];

P=(M/2)*[g On;On In];

V=zeros(4*n+2,m);

Ai=inv(A);

Bk=Ai*B;

for i=1:m,

Bk=Bk/norm(Bk);

V(:,i)=Bk;

Bk=Ai*Bk;

Bk=Bk-V(:,1:i)*(V(:,1:i)’*Bk);

end

U=inv(V’*P*V)*V’*P;

A1=U*A*V;

B1=U*B;

C1=C*V;

A2=V’*A*V;

B2=V’*B;

C2=C*V;

w=linspace(0,100,1000);

g=squeeze(freqresp(ss(A,B,C,0),w));

g1=squeeze(freqresp(ss(A1,B1,C1,0),w));

g2=squeeze(freqresp(ss(A2,B2,C2,0),w));

close(gcf)

subplot(2,1,1);plot(w,real(g),w,real(g1)); grid
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subplot(2,1,2);plot(w,real(g),w,real(g2)); grid


