Massachusetts Institute of Technology
 Department of Electrical Engineering and Computer Science
 6.242, Fall 2004: MODEL REDUCTION *

Problem set 3 solution ${ }^{1}$

Problem 3.1

Hankel singular numbers of a stable causal LTI system G of very large ORDER ARE GIVEN BY

$$
\sigma_{k}(G)=2^{-m} \text { for } k=2^{m}+1, \ldots, 2^{m+1}, \quad(m=0,1, \ldots), \quad \sigma_{1}(G)=2 .
$$

(a) Suggest a good a-priori lower bound for the quality $\|G-\hat{G}\|_{\infty}$ of approximating G By a System \hat{G} OF ORDER 8.

The available lower bound is $\sigma_{9}(G)=1 / 8$.
(b) Suggest a good a-priori upper bound for the quality $\left\|G-\hat{G}_{b t r}\right\|_{\infty}$ of approximating G By a system $\hat{G}_{b t r}$ OF ORDER 8 USING THE METHOD OF BALANCED TRUNCATION.

The available upper bound equals the double sum of different singular values $\sigma_{k}(G)$ with $k>8$, which yields

$$
2\left(2^{-3}+2^{-4}+2^{-5}+\ldots\right)=2 \cdot 2^{-2}=1 / 2
$$

[^0](c) What are the Hankel singular numbers of $\hat{G}_{b t r}$ From (b)?

As it is proven in the lecture notes, Hankel sinular numbers of the 8 -th order reduced system are the first eight Hankel numbers of G :

$$
2,1,1 / 2,1 / 2,1 / 4,1 / 4,1 / 4,1 / 4
$$

Problem 3.2

Give an explicit description of the set of all possible n-VECTORS

$$
\left[\sigma_{1}(G), \sigma_{2}(G), \ldots, \sigma_{n}(G)\right],
$$

formed by the Hankel singular values $\sigma_{k}(G)$ of all stable "all pass" transFER FUNCTIONS G OF ORDER n (I.E. SUCH THAT $|G(j \omega)|=1$ FOR ALL ω).
(a) Design a numerical experiment, utilizing MATLAB functions lyap, chol, AND eig, TO COLLECT DATA ON THE TOPIC. (DO NOT USE sysbal AND SIMILAR "FULL SERVICE" MODEL REDUCTION FUNCTIONS.)
Function hsvd_6242.m provides calculation of Hankel singular values for stable systems of moderate order. (It can also produce a reduced order system, when necessary.)

```
function H=hsvd_6242(G,m)
% function H=hsvd_6242(G,m)
%
% Hankel svd for CT stable system G
% with one argument: H is the ordered vector of Hankel singular values
% with two arguments: H is the m-th order btr reduced system
if nargin<1, % a test example
    G=ss(diag(-(1:30)),ones(30,1),ones(1,30),0);
    m=3;
end
[A,B,C,d]=ssdata(G);
Wc=lyap(A,B*B');
Wo=lyap(A',C'*C);
[V,D]=eig(Wc*Wo);
```

```
V=real(V);
[W,I]=sort(-sqrt(abs(diag(D))));
V=V(:,I);
W=-W;
if nargin==1,
    H=W;
else
    V=V(:,1:m);
    U=(V'*Wo*V)\(V'*Wo);
    H=ss(U*A*V,U*B,C*V,d);
end
if nargin }~=1
    w=linspace(0,100,1000);
    g=squeeze(freqresp(G,w));
    g1=squeeze(freqresp(H,w));
    close(gcf)
    subplot(2,1,1);plot(w,real(g),w,real(g1)); grid
    subplot(2,1,2);plot(w,imag(g),w,imag(g1)); grid
end
```

Function ps32_6242_2004.m generates random all-pass systems and calculates their Hankel singular numbers, utilizing hsvd_6242.m.

```
function ps32_6242_2004(n,m)
% function ps32_6242_2004(n,m)
%
% solves Problem 3.2a by generating a random all-pass
% stable transfer function G of order n+2m (n real poles, 2n complex poles)
% and finding its Hankel singular values
%
% uses hsvd_6242.m
if nargin<1, n=5; end
if nargin<2, m=5; end
p=rand(n); % -p are real poles
a=rand(m); % -a are real parts of complex poles
```

```
b=rand(m); % b are imaginary parts of complex poles
s=tf('s');
G=1;
for k=1:n,
    G=G*((s-p(k))/(s+p(k)));
end
for k=1:m,
    G=G*((s^2-2*a(k)*s+a(k)^2+b(k)^2)/(s^2+2*a(k)*s+a(k)^2+b(k)^2));
end
```

hsvd_6242(G)
(b) Formulate a hypotheses on what the answer is.

The numerical experiment indicates clearly that all Hankel singular numbers of an all-pass system equal 1 .
(c) Prove the hypotheses (at least for the case $n=2$).

Let

$$
G(s)=C(s I-A)^{-1} B+D
$$

be an all-pass stable transfer function. Without loss of generality, assume that A is an n-by- n Hurwitz matrix, the pair (A, B) is controllable, and the pair (C, A) is observable.

The most important step of the proof is to establish existence of a matrix $P=P^{\prime}$ such that

$$
\begin{equation*}
2 \bar{x}^{\prime} P(A \bar{x}+B \bar{f})=|\bar{f}|^{2}-|C \bar{x}+D \bar{f}|^{2} \quad \forall \bar{f} \in \mathbf{R}, \bar{x} \in \mathbf{R}^{n} \tag{3.1}
\end{equation*}
$$

which is a special case of the KYP (Kalman-Yakubovich-Popov) Lemma.
To prove (3.1) independently, define P as the observability Gramian $P=W_{o}$. By assumption,

$$
|G(j \omega)|^{2}-1=0 \quad \forall \omega \in \mathbf{R} .
$$

Hence

$$
\int_{-\infty}^{\infty}\left(|\tilde{y}(j \omega)|^{2}-|\tilde{f}(j \omega)|^{2}\right) d \omega=0
$$

where \tilde{f} is the Fourier transform of a square integrable function $f=f(t)$ defined for $t \geq 0$, and $\tilde{y}(j \omega)=G(j \omega) \tilde{f}(j \omega)$. According to the Parceval identity, this means that

$$
\int_{0}^{\infty}\left(|C x(t)+D f(t)|^{2}-|f(t)|^{2}\right) d t=0
$$

for the solution $x=x(t)$ of

$$
\begin{equation*}
\dot{x}(t)=A x(t)+B f(t), \quad x(0)=0 . \tag{3.2}
\end{equation*}
$$

Since

$$
\int_{T}^{\infty}\left(|C x(t)+D f(t)|^{2}-|f(t)|^{2}\right) d t=x(T)^{\prime} W_{o} x(T)
$$

whenever $f(t) \equiv 0$ for $t \geq T$, we have

$$
x(T)^{\prime} W_{o} x(T)+\int_{0}^{T}\left(|C x(t)+D f(t)|^{2}-|f(t)|^{2}\right) d t \equiv 0
$$

for every solution of (3.2). Differentiating this with respect to T yields

$$
2 x(T)^{\prime} W_{o}(A x(T)+f(T))+|C x(T)+D f(T)|^{2}-|f(T)|^{2} \equiv 0
$$

Since the pair (A, B) is controllable, $x(T)$ can be an arbitrary vector from \mathbf{R}^{n}. Since $f(T)$ can also be chosen arbitrarily (and independently of $x(T)$), identity (3.1) holds for $P=W_{o}$.
Once (3.1) is established, comparing the coefficients at $f x$ on both sides of the identity yields

$$
B^{\prime} P+D C=0 .
$$

In addition, comparing the coefficients at f^{2} yields $D^{2}=1$. Substituting $C=$ $-D^{-1} B^{\prime} W_{o}$ into the Lyapunov equation

$$
W_{o} A+A^{\prime} W_{o}=-C^{\prime} C
$$

and multiplying by W_{o}^{-1} on both sides yields

$$
A W_{o}^{-1}+W_{o}^{-1} A^{\prime}=-B B^{\prime}
$$

Hence $W_{c}=W_{o}^{-1}$, and the Hankel singular values of G, as square roots of the eigenvalues of $W_{o} W_{c}=I_{n}$, are all equal to 1 .

Problem 3.3

Use the method of balanced truncation to find a 10Th order reduced model for the system described in Problem 2.3, with $M=1, B=0.2, K=4$, AND $n=50$. (Do NOT USE sysbal AND SIMILAR "FULL SERVICE" MODEL REDUCTION FUNCTIONS.)

The task is performed by ps33_6242_2004.m. Applying balanced truncation in the case $M=1, B=0.2, K=4, n=50$ fails miserably, which can explained by the fact that there are no 10th order approximations which are good "accross the spectrum" in this case. On the other hand, for a larger dissipation factor $B=20$, balanced truncation performs much better than the moments matching methods from problem set 2 .

```
function ps33_6242_2004(n,m,M,R,K)
% function ps33_6242_2004(n,m,M,R,K)
%
% Solves Problem 3.3
if nargin<1, n=50; end
if nargin<2, m=10; end
if nargin<3, M=1; end
if nargin<4, R=0.2; end
if nargin<5, K=4; end
g=(2*(n^2)*K/M)*toeplitz([ 2 -1 zeros(1,2*n-1)]);
In=eye(2*n+1);
On=zeros(2*n+1);
b=[1;zeros(2*n,1)];
c=[zeros(1,n) 1 zeros(1,n)];
A=[On In; -g - (R/M)*In];
B}=[zeros(2*n+1,1);b]
C=[c zeros(1,2*n+1)];
G=ss(A,B,C,0);
H=hsvd_6242(G,m);
```


[^0]: *(C)A. Megretski, 2004
 ${ }^{1}$ Version of October 26, 2004.

