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Problem set 3 solution!

Problem 3.1

HANKEL SINGULAR NUMBERS OF A STABLE CAUSAL LTI SYSTEM G OF VERY LARGE
ORDER ARE GIVEN BY

op(G)=2"" for k=2"4+1,....2"" (m=0,1,...), 01(G)=2.

(a) SUGGEST A GOOD A-PRIORI LOWER BOUND FOR THE QUALITY |G — G|lo OF
APPROXIMATING G BY A SYSTEM G OF ORDER 8.

The available lower bound is o¢(G) = 1/8.

(b) SUGGEST A GOOD A-PRIORI UPPER BOUND FOR THE QUALITY |G — Gpt||cc OF
APPROXIMATING G BY A SYSTEM Gj; OF ORDER 8 USING THE METHOD OF
BALANCED TRUNCATION.

The available upper bound equals the double sum of different singular values o4 (G)
with & > 8, which yields

2270 +27 4270+ ) =222 =1/2,
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(¢) WHAT ARE THE HANKEL SINGULAR NUMBERS OF Gyir FROM (B)?

As it is proven in the lecture notes, Hankel sinular numbers of the 8-th order reduced
system are the first eight Hankel numbers of G

2,1, 1/2, 1/2, 1/4, 1/4, 1/4, 1/4.

Problem 3.2

GIVE AN EXPLICIT DESCRIPTION OF THE SET OF ALL POSSIBLE n-VECTORS
[Ul(G)> 02(G)a SR UN(G)]>

FORMED BY THE HANKEL SINGULAR VALUES 0% (G) OF ALL STABLE “ALL PASS” TRANS-
FER FUNCTIONS GG OF ORDER 7 (I.E. SUCH THAT |G(jw)| =1 FOR ALL w).

(a) DESIGN A NUMERICAL EXPERIMENT, UTILIZING MATLAB FUNCTIONS lyap,
chol, AND eig, TO COLLECT DATA ON THE TOPIC. (DO NOT USE sysbal AND
SIMILAR “FULL SERVICE” MODEL REDUCTION FUNCTIONS.)

Function hsvd_6242.m provides calculation of Hankel singular values for stable sys-
tems of moderate order. (It can also produce a reduced order system, when neces-

sary.)

function H=hsvd_6242(G,m)

% function H=hsvd_6242(G,m)

yA

% Hankel svd for CT stable system G

%  with one argument: H is the ordered vector of Hankel singular values

% with two arguments: H is the m-th order btr reduced system

if nargin<l, 7 a test example
G=ss(diag(-(1:30)) ,o0nes(30,1) ,ones(1,30),0);
m=3;

end

[A,B,C,d]=ssdata(G);
Wc=1lyap(A,B*B’);
Wo=lyap(A’,C’*C) ;
[V,D]=eig(Wc*Wo) ;



V=real (V) ;
[W,I]=sort(-sqrt(abs(diag(D))));
v=v(:,I);

W=-W;

if nargin==1,

H=W;

else

V=V(:,1:m);
U=(V’>*WoxV) \ (V’ *xWo) ;
H=ss (UxA*V,UxB,C*V,d) ;

end

if nargin™=1,

w=linspace(0,100,1000) ;

g=squeeze (freqresp(G,w)) ;

gl=squeeze (freqresp(H,w));

close(gct)
subplot(2,1,1);plot(w,real(g),w,real(gl)); grid
subplot(2,1,2);plot(w,imag(g) ,w,imag(gl)); grid

end

Function ps32_6242_2004 .m generates random all-pass systems and calculates their
Hankel singular numbers, utilizing hsvd_6242.m.

function ps32_6242_2004(n,m)

b
b
b
b
b
b
b

function ps32_6242_2004(n,m)
solves Problem 3.2a by generating a random all-pass
stable transfer function G of order n+2m (n real poles, 2n complex poles)

and finding its Hankel singular values

uses hsvd_6242.m

if nargin<l, n=5; end
if nargin<2, m=5; end

p=

rand(n) ; % -p are real poles

a=rand (m) ; %» -—a are real parts of complex poles



b=rand (m) ; % b are imaginary parts of complex poles

s=tf(’s’);
G=1;
for k=1:n,
G=G*((s-p(k))/(s+p(k)));
end
for k=1:m,
G=G* ((s72-2*a(k)*s+a(k) "2+b(k) "2) / (s~ 2+2*xa(k) *s+a(k) "2+b(k) "2));
end

hsvd_6242(G)

FORMULATE A HYPOTHESES ON WHAT THE ANSWER IS.

The numerical experiment indicates clearly that all Hankel singular numbers of an
all-pass system equal 1.

PROVE THE HYPOTHESES (AT LEAST FOR THE CASE n = 2).

Let
G(s)=C(sI —A)'B+D

be an all-pass stable transfer function. Without loss of generality, assume that A
is an n-by-n Hurwitz matrix, the pair (A, B) is controllable, and the pair (C, A) is
observable.

The most important step of the proof is to establish existence of a matrix P = P’
such that

27 P(Az + Bf) = |f? - |Cz + Df|* V f € R, 7 € R, (3.1)

which is a special case of the KYP (Kalman-Yakubovich-Popov) Lemma.

To prove (3.1) independently, define P as the observability Gramian P = W,. By
assumption,

|IG(jw)]?=1=0 YwecR.



Hence

/ TGP — 1FGw)P)de = 0,

— 00

where f is the Fourier transform of a square integrable function f = f (t) defined

for t > 0, and §(jw) = G(jw) f(jw). According to the Parceval identity, this means
that

| ezt + DroR - 150P =0
for the solution x = x(t) of
#(t) = Az(t) + Bf(t), z(0) =0, (3.2)

Since

|t + DA = 1f0) Pt = a7 W)

T
whenever f(t) =0 for t > T, we have

2(T) Wou(T) +/0 (ICz(t) + DFWO = [f(B)*)dt =0

for every solution of (3.2). Differentiating this with respect to 7" yields
20(T)Wo(Ax(T) + f(T) + |Cx(T) + DF(T))* = |f(T)]* =0

Since the pair (A, B) is controllable, (7") can be an arbitrary vector from R". Since
f(T') can also be chosen arbitrarily (and independently of z(T")), identity (3.1) holds
for P =W,.

Once (3.1) is established, comparing the coefficients at fz on both sides of the
identity yields
B'P+ DC =0.

In addition, comparing the coefficients at f? yields D? = 1. Substituting C' =
— D~ B'W, into the Lyapunov equation

W,A+ AW, =-C'C
and multiplying by W, ! on both sides yields
AW, P+ WA = —BB'.

Hence W, = W, !, and the Hankel singular values of G, as square roots of the
eigenvalues of W, W, = I,,, are all equal to 1.



Problem 3.3

USE THE METHOD OF BALANCED TRUNCATION TO FIND A 10TH ORDER REDUCED
MODEL FOR THE SYSTEM DESCRIBED IN PROBLEM 2.3, WITH M =1, B=0.2, K =4,
AND n = 50. (DO NOT USE sysbal AND SIMILAR “FULL SERVICE” MODEL REDUCTION
FUNCTIONS.)

The task is performed by ps33.6242_2004.m. Applying balanced truncation in the
case M =1, B =0.2, K =4, n = 50 fails miserably, which can explained by the fact
that there are no 10th order approximations which are good “accross the spectrum” in
this case. On the other hand, for a larger dissipation factor B = 20, balanced truncation
performs much better than the moments matching methods from problem set 2.

function ps33_6242_2004(n,m,M,R,K)
% function ps33_6242_2004(n,m,M,R,K)
yA

% Solves Problem 3.3

if nargin<l, n=50; end
if nargin<2, m=10; end
if nargin<3, M=1; end
if nargin<4, R=0.2; end
if nargin<b5, K=4; end

g=(2x(n"2) *K/M) *toeplitz([ 2 -1 zeros(1,2xn-1)]);
In=eye(2+*n+1);

On=zeros (2*n+1) ;

b=[1;zeros(2*n,1)];

c=[zeros(1,n) 1 zeros(l,n)];

A=[On In; -g -(R/M)*In];

B=[zeros(2*n+1,1);b];

C=[c zeros(1,2*n+1)];

G=ss(A,B,C,0);
H=hsvd_6242(G,m) ;



