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Problem 3.1

Hankel singular numbers of a stable causal LTI system G of very large
order are given by

σk(G) = 2−m for k = 2m + 1, . . . , 2m+1, (m = 0, 1, . . . ), σ1(G) = 2.

(a) Suggest a good a-priori lower bound for the quality ‖G − Ĝ‖∞ of
approximating G by a system Ĝ of order 8.

The available lower bound is σ9(G) = 1/8.

(b) Suggest a good a-priori upper bound for the quality ‖G − Ĝbtr‖∞ of
approximating G by a system Ĝbtr of order 8 using the method of
balanced truncation.

The available upper bound equals the double sum of different singular values σk(G)
with k > 8, which yields

2(2−3 + 2−4 + 2−5 + . . . ) = 2 · 2−2 = 1/2.
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(c) What are the Hankel singular numbers of Ĝbtr from (b)?

As it is proven in the lecture notes, Hankel sinular numbers of the 8-th order reduced
system are the first eight Hankel numbers of G:

2, 1, 1/2, 1/2, 1/4, 1/4, 1/4, 1/4.

Problem 3.2

Give an explicit description of the set of all possible n-vectors

[σ1(G), σ2(G), . . . , σn(G)],

formed by the Hankel singular values σk(G) of all stable “all pass” trans-
fer functions G of order n (i.e. such that |G(jω)| = 1 for all ω).

(a) Design a numerical experiment, utilizing MATLAB functions lyap,
chol, and eig, to collect data on the topic. (Do not use sysbal and
similar “full service” model reduction functions.)

Function hsvd 6242.m provides calculation of Hankel singular values for stable sys-
tems of moderate order. (It can also produce a reduced order system, when neces-
sary.)

function H=hsvd_6242(G,m)

% function H=hsvd_6242(G,m)

%

% Hankel svd for CT stable system G

% with one argument: H is the ordered vector of Hankel singular values

% with two arguments: H is the m-th order btr reduced system

if nargin<1, % a test example

G=ss(diag(-(1:30)),ones(30,1),ones(1,30),0);

m=3;

end

[A,B,C,d]=ssdata(G);

Wc=lyap(A,B*B’);

Wo=lyap(A’,C’*C);

[V,D]=eig(Wc*Wo);
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V=real(V);

[W,I]=sort(-sqrt(abs(diag(D))));

V=V(:,I);

W=-W;

if nargin==1,

H=W;

else

V=V(:,1:m);

U=(V’*Wo*V)\(V’*Wo);

H=ss(U*A*V,U*B,C*V,d);

end

if nargin~=1,

w=linspace(0,100,1000);

g=squeeze(freqresp(G,w));

g1=squeeze(freqresp(H,w));

close(gcf)

subplot(2,1,1);plot(w,real(g),w,real(g1)); grid

subplot(2,1,2);plot(w,imag(g),w,imag(g1)); grid

end

Function ps32 6242 2004.m generates random all-pass systems and calculates their
Hankel singular numbers, utilizing hsvd 6242.m.

function ps32_6242_2004(n,m)

% function ps32_6242_2004(n,m)

%

% solves Problem 3.2a by generating a random all-pass

% stable transfer function G of order n+2m (n real poles, 2n complex poles)

% and finding its Hankel singular values

%

% uses hsvd_6242.m

if nargin<1, n=5; end

if nargin<2, m=5; end

p=rand(n); % -p are real poles

a=rand(m); % -a are real parts of complex poles
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b=rand(m); % b are imaginary parts of complex poles

s=tf(’s’);

G=1;

for k=1:n,

G=G*((s-p(k))/(s+p(k)));

end

for k=1:m,

G=G*((s^2-2*a(k)*s+a(k)^2+b(k)^2)/(s^2+2*a(k)*s+a(k)^2+b(k)^2));

end

hsvd_6242(G)

(b) Formulate a hypotheses on what the answer is.

The numerical experiment indicates clearly that all Hankel singular numbers of an
all-pass system equal 1.

(c) Prove the hypotheses (at least for the case n = 2).

Let
G(s) = C(sI − A)−1B + D

be an all-pass stable transfer function. Without loss of generality, assume that A
is an n-by-n Hurwitz matrix, the pair (A, B) is controllable, and the pair (C, A) is
observable.

The most important step of the proof is to establish existence of a matrix P = P ′

such that

2x̄′P (Ax̄ + Bf̄) = |f̄ |2 − |Cx̄ + Df̄ |2 ∀ f̄ ∈ R, x̄ ∈ Rn, (3.1)

which is a special case of the KYP (Kalman-Yakubovich-Popov) Lemma.

To prove (3.1) independently, define P as the observability Gramian P = Wo. By
assumption,

|G(jω)|2 − 1 = 0 ∀ ω ∈ R.
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Hence ∫
∞

−∞

(|ỹ(jω)|2 − |f̃(jω)|2)dω = 0,

where f̃ is the Fourier transform of a square integrable function f = f(t) defined
for t ≥ 0, and ỹ(jω) = G(jω)f̃(jω). According to the Parceval identity, this means
that ∫

∞

0

(|Cx(t) + Df(t)|2 − |f(t)|2)dt = 0

for the solution x = x(t) of

ẋ(t) = Ax(t) + Bf(t), x(0) = 0. (3.2)

Since ∫
∞

T

(|Cx(t) + Df(t)|2 − |f(t)|2)dt = x(T )′Wox(T )

whenever f(t) ≡ 0 for t ≥ T , we have

x(T )′Wox(T ) +

∫
T

0

(|Cx(t) + Df(t)|2 − |f(t)|2)dt ≡ 0

for every solution of (3.2). Differentiating this with respect to T yields

2x(T )′Wo(Ax(T ) + f(T )) + |Cx(T ) + Df(T )|2 − |f(T )|2 ≡ 0

Since the pair (A, B) is controllable, x(T ) can be an arbitrary vector from Rn. Since
f(T ) can also be chosen arbitrarily (and independently of x(T )), identity (3.1) holds
for P = Wo.

Once (3.1) is established, comparing the coefficients at fx on both sides of the
identity yields

B′P + DC = 0.

In addition, comparing the coefficients at f 2 yields D2 = 1. Substituting C =
−D−1B′Wo into the Lyapunov equation

WoA + A′Wo = −C ′C

and multiplying by W−1
o

on both sides yields

AW−1

o
+ W−1

o
A′ = −BB′.

Hence Wc = W−1
o

, and the Hankel singular values of G, as square roots of the
eigenvalues of WoWc = In, are all equal to 1.
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Problem 3.3

Use the method of balanced truncation to find a 10th order reduced
model for the system described in Problem 2.3, with M = 1, B = 0.2, K = 4,
and n = 50. (Do not use sysbal and similar “full service” model reduction
functions.)

The task is performed by ps33 6242 2004.m. Applying balanced truncation in the
case M = 1, B = 0.2, K = 4, n = 50 fails miserably, which can explained by the fact
that there are no 10th order approximations which are good “accross the spectrum” in
this case. On the other hand, for a larger dissipation factor B = 20, balanced truncation
performs much better than the moments matching methods from problem set 2.

function ps33_6242_2004(n,m,M,R,K)

% function ps33_6242_2004(n,m,M,R,K)

%

% Solves Problem 3.3

if nargin<1, n=50; end

if nargin<2, m=10; end

if nargin<3, M=1; end

if nargin<4, R=0.2; end

if nargin<5, K=4; end

g=(2*(n^2)*K/M)*toeplitz([ 2 -1 zeros(1,2*n-1)]);

In=eye(2*n+1);

On=zeros(2*n+1);

b=[1;zeros(2*n,1)];

c=[zeros(1,n) 1 zeros(1,n)];

A=[On In; -g -(R/M)*In];

B=[zeros(2*n+1,1);b];

C=[c zeros(1,2*n+1)];

G=ss(A,B,C,0);

H=hsvd_6242(G,m);


