# Massachusetts Institute of Technology <br> Department of Electrical Engineering and Computer Science <br> 6.242, Fall 2004: MODEL REDUCTION * 

## Problem set $5^{1}$

This problem set, to serve as preparation for Quiz 1, contains theoretical questions only.

## Problem 5.1

For each of the stetements below, state if it is true or false. For false statements, give a counterexample. For correct statements, give a brief sketch of a proof.
(a) H-Infinity norm of system with transfer function

$$
H(s)=D+C(s I-A)^{-1} B
$$

is not smaller than $|D|$.
(b) If $A, B, C, D$ are matrices of dimensions $n$-by- $n$, $n$-by- 1,1 -by- $n$, and 1 -by- 1 respectively, and matrices

$$
M_{c}=\left[\begin{array}{lllll}
B & A B & A^{2} B & \ldots & A^{n-1} B
\end{array}\right], \quad M_{o}=\left[\begin{array}{c}
C \\
C A \\
C A^{2} \\
\vdots \\
C A^{n-1}
\end{array}\right]
$$

[^0]have rank $n-1$ then order of system with transfer function
$$
H(s)=D+C(s I-A)^{-1} B
$$
equals $n-1$.
(c) If $A q=0$ for some vector $q \neq 0$ then
$$
\lim _{s \rightarrow 0} s C(s I-A)^{-1} B=C q
$$
(d) If $A$ is a Hurwitz matrix, and matrix $V$ is such that $V^{\prime} V=I$ then $V^{\prime} A V$ is a Hurwitz matrix as well.
(e) If $A$ is a Hurwitz matrix, the pair $(A, B)$ is controllable, the pair $(C, A)$ is observable, and $W>0$ is a diagonal matrix such that
$$
A W+W A^{\prime}=-B B^{\prime}, \quad W A+A^{\prime} W=-C^{\prime} C
$$
then $A_{11}<0$, where $A_{11}$ is the upper left corner element of $A$.
(f) If a proper rational transfer function $G=G(s)$ without poles in the closed right half plane satisfies $|G(j \omega)| \leq 1$ for all $\omega \in \mathbf{R}$, all Hankel singular numbers of $G$ are not larger than 1.

## Problem 5.2

What is the order of the LTI system with transfer matrix

$$
H(s)=\left[\begin{array}{ll}
1 /(s+1) & 1 /(s+2) \\
1 /(s+3) & 1 /(s+3)
\end{array}\right] ?
$$

## Problem 5.3

Knowing that $G(j \omega)=1+j$ for $\omega=1, G(0)=1, G(-1)=5$, and $G(\infty)=4$, what is the best lower bound of the H-Infinity norm of a rational function $G$ ?

## Problem 5.4

Find L2 gain of the system which maps scalar inputs $f(t)$ into outputs

$$
y(t)=f(t-1) /\left(1+t^{2}+|f(t-1)|^{2}\right) .
$$

## Problem 5.5

$A, B, C, D$ are matrices of dimensions $n$-by- $n$, $n$-by- 1,1 -by- $n$, and 1 -by- 1 respectively, such that $C A^{-3} B=1$ and matrix $U V$, where

$$
U=\left[\begin{array}{c}
C \\
C A^{-1}
\end{array}\right], \quad V=\left[\begin{array}{cc}
B & A^{-1} B
\end{array}\right]
$$

is not singular. Is this information sufficient to find $\hat{C} \hat{A}^{-3} \hat{B}$, where

$$
\hat{C}=C V, \quad \hat{B}=U B, \quad \hat{A}=U A V ?
$$

## Problem 5.6

What is the value of the 7th largest Hankel singular value of

$$
H(s)=\left(s^{2}-2 s+2\right)^{5} /\left(s^{2}+2 s+2\right)^{5} ?
$$

## Problem 5.7

A fifth order transfer function $\hat{G}$ is obtained by applying the standard balanced truncation algorithm to a seventh order transfer function $G$ which has Hankel singular numbers $7,6,5,4,3,2,1$. What are the Hankel singular numbers of $\hat{G}$ ? What is the range of possible values of $\|G-\hat{G}\|_{\infty}$ ?


[^0]:    *(C)A. Megretski, 2004
    ${ }^{1}$ Version of October 28, 2004. Due November 10, 2004.

