Massachusetts Institute of Technology
 Department of Electrical Engineering and Computer Science
 6.242, Fall 2004: MODEL REDUCTION *

Problem set 5 solutions ${ }^{1}$

Problem 5.1

For each of the stetements below, state if it is true or false. For false statements, give a counterexample. For correct statements, give a brief SKETCH OF A PROOF.
(a) H-Infinity norm of system with transfer function

$$
H(s)=D+C(s I-A)^{-1} B
$$

IS NOT SMALLER THAN $|D|$.

True. Since $H(j \omega) \rightarrow D$ as $\omega \rightarrow \infty$, the supremum of $|H(j \omega)|$ is not smaller than $|D|$.
(b) If A, B, C, D ARE MATRICES OF DIMENSIONS n-BY- n, n-BY- 1,1 -BY- n, AND 1-

[^0]BY-1 RESPECTIVELY, AND MATRICES

$$
M_{c}=\left[\begin{array}{lllll}
B & A B & A^{2} B & \ldots & A^{n-1} B
\end{array}\right], \quad M_{o}=\left[\begin{array}{c}
C \\
C A \\
C A^{2} \\
\vdots \\
C A^{n-1}
\end{array}\right]
$$

HAVE RANK $n-1$ THEN ORDER OF SYSTEM WITH TRANSFER FUNCTION

$$
H(s)=D+C(s I-A)^{-1} B
$$

EQUALS $n-1$.

False. For example, with $n=3$,

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right], \quad B=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad C=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right], \quad D=0
$$

both matrices

$$
M_{c}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad M_{o}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

have rank $n-1=2$, but $H(s)=1 / s$ has order 1 .
(c) IF $A q=0$ FOR SOME VECTOR $q \neq 0$ THEN

$$
\lim _{s \rightarrow 0} s C(s I-A)^{-1} B=C q
$$

False. For example, with $A=0, B=C=1, q=2$, we have $C q=2$ but $s C(s I-A)^{-1} B \rightarrow 1$ as $s \rightarrow 0$.
(d) If A is a Hurwitz matrix, and matrix V is such that $V^{\prime} V=I$ then $V^{\prime} A V$ is a Hurwitz matrix as well.

False. For example, if

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right], \quad V=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

then A is a Hurwitz matrix, and $V^{\prime} V=1$, but $V^{\prime} A V=0$ is not a Hurwitz matrix.
(e) If A is a Hurwitz matrix, the pair (A, B) is controllable, the pair (C, A) IS ObSERVABLE, AND $W>0$ is a diagonal matrix such that

$$
A W+W A^{\prime}=-B B^{\prime}, \quad W A+A^{\prime} W=-C^{\prime} C
$$

then $A_{11}<0$, where A_{11} IS The upper left corner element of A.

False. for example, if

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-1 & -0.5
\end{array}\right], \quad B=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad C=\left[\begin{array}{ll}
0 & 1
\end{array}\right], \quad W=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

then all conditions are satisfied, but $A_{11}=0$.
(f) If a proper rational transfer function $G=G(s)$ without poles in the Closed right half plane satisfies $|G(j \omega)| \leq 1$ for all $\omega \in \mathbf{R}$, all Hankel Singular numbers of G are not larger than 1.

True. Since G can be approximated by 0 (a zero order transfer function) with HInfinity norm of the modeling error not larger than one, the largest Hankel singular number of G, which is a lower bound for such error, must be not larger than 1 .

Problem 5.2

What is the order of the LTI system with transfer matrix

$$
H(s)=\left[\begin{array}{ll}
1 /(s+1) & 1 /(s+2) \\
1 /(s+3) & 1 /(s+3)
\end{array}\right] ?
$$

The system has order 3 . Indeed, the system has state space model with

$$
A=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -3
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right], \quad C=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad D=0
$$

which is both controllable and observable.

Problem 5.3

Knowing that $G(j \omega)=1+j$ FOR $\omega=1, G(0)=1, G(-1)=5$, and $G(\infty)=4$, what is the best lower bound of the H-Infinity norm of a rational function G ?

The best lower bound is 4 . Indeed, since the points $0, j, \infty$ are on the "extended" imaginary axis, the H-Infinity norm cannot be smaller than any of the numbers $|1+j|=$ $\sqrt{2}, 1,4$. On the other hand, transfer function

$$
G(s)=\frac{16\left(s^{2}+1\right)(s+1)}{(s+2)^{4}}-\frac{5 s\left(s^{2}+1\right)}{2(s+2)^{4}}+\frac{s(s+1)(41+38 s)}{(s+2)^{5}}+\frac{4 s\left(s^{2}+1\right)(s+1)}{(s+2)^{4}}
$$

satisfies all interpolation constraints, and its H-Infinity norm is exactly 4.

Problem 5.4

Find L2 Gain of the system which maps scalar inputs $f(t)$ into outputs

$$
y(t)=f(t-1) /\left(1+t^{2}+|f(t-1)|^{2}\right) .
$$

The L2 gain equals zero. To see this, note that the system is a series connection of delay by 1 ,

$$
f(t) \mapsto g(t)=f(t-1)
$$

and a memoryless system

$$
g(t) \mapsto y(t)=g(t) /\left(1+t^{2}+|g(t)|^{2}\right)
$$

Note that the delay has L2 gain 1. Also, since the maximal possible value of $|y(t)| /|g(t)|$ converges to zero as $t \rightarrow \infty$, L2 gain of the memoryless block equals zero. Hence the overall L2 gain is zero.

Problem 5.5

A, B, C, D are matrices of dimensions n-BY- n, n-BY- 1,1 -BY- n, AND 1 -BY- 1 RESPECTIVELY, SUCH THAT $C A^{-3} B=1$ and matrix $U V$, where

$$
U=\left[\begin{array}{c}
C \\
C A^{-1}
\end{array}\right], \quad V=\left[\begin{array}{cc}
B & A^{-1} B
\end{array}\right]
$$

IS NOT SINGULAR. Is This information sufficient to find $\hat{C} \hat{A}^{-3} \hat{B}$, where

$$
\hat{C}=C V, \quad \hat{B}=U B, \quad \hat{A}=U A V ?
$$

The information is not sufficient.

Problem 5.6

What is the value of the 7th largest Hankel singular value of

$$
H(s)=\left(s^{2}-2 s+2\right)^{5} /\left(s^{2}+2 s+2\right)^{5} ?
$$

Since H is a stable all-pass tranfer function of 10th order, all of its ten positive singular numbers are equal to 1 .

Problem 5.7

A Fifth order transfer function \hat{G} is obtained by applying the standard BALANCED TRUNCATION ALGORITHM TO A SEVENTH ORDER TRANSFER FUNCTION G which has Hankel singular numbers $7,6,5,4,3,2,1$. What are the Hankel singular numbers of \hat{G} ? What is the range of possible values of $\|G-\hat{G}\|_{\infty}$?

The Hankel singular numbers of \hat{G} are the 5 largest singular numbers of G, i.e. $7,6,5,4,3$. The range of possible values of $\|G-\hat{G}\|_{\infty}$ is from σ_{6} to $2\left(\sigma_{6}+\sigma_{7}\right)$, i.e. $[2,6]$.

[^0]: *(CA. Megretski, 2004
 ${ }^{1}$ Version of November 2, 2004.

