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Problem 6.1

(a) Find an analytical expression for the coefficients c1, . . . , cn of the
linear combination

Ĝn(s) =

n
∑

k=1

ck

s + 1/k
,

which minimizes the integral

‖G − Ĝn‖
2
H2 =

1

2π

∫

∞

−∞

|G(jω) − Ĝn(jω)|2dω,

where

G(s) =
s1/3

s + 1
.

For the optimal coefficients ck, the scalar product of the error transfer function
∆(s) = G(s) − Gn(s) with each of the basis functions 1/(s + 1/k) must be zero.

Note that, for a strictly proper rational transfer function H = H(s) with no poles in
the closed right half plane, the scalar product 〈H, Ha〉 of H with Ha(s) = 1/(s+a),
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where a > 0, is given by 〈H, Ha〉 = H(a). Indeed, if h = h(t) is the inverse Laplace
transform of H , then the Parceval formulae yields

〈H, Ha〉 =

∫

∞

0

e−ath(t)dt = H(a).

Hence, the optimal coefficients satisfy

G(1/m) =

n
∑

k=1

ck

1/m + 1/k
, m = 1, 2, . . . , n,

which yields c = W−1g, where

c =











c1

c2
...
cn











, g =













1
2

2−1/3

1+1/2
...

n−1/3

1+1/n













, W =











1
1+1

1
1+1/2

. . . 1
1+1/n

1
1+1/2

1
1/2+1/2

...
. . .

1
1+1/n

1
1/n+1/n











.

(b) For n = 1, 2, . . . , 50, use MATLAB to compute and compare ‖G − Ĝn‖H2

and ‖G − Ĝn‖∞.

Since, for the optimal ck, functions H1/k(s) = 1/(s + 1/k) are orthogonal to G − Ĝ

for k = 1, 2, . . . , n, it follows that G − Ĝ is orthogonal to Ĝ, and hence

‖G − Ĝ‖2
H2 = ‖G‖2

H2 − ‖Ĝ‖2
H2.

Here
‖Ĝ‖2

H2 = c′Wc = g′W−1g,

and ‖G‖2
H2 can be calculated as

‖G‖2
H2 =

1

2π

∫

∞

−∞

ω2/3dω

ω2 + 1

=
1

π

∫

∞

0

ω2/3dω

ω2 + 1

=
3

π

∫

∞

0

r4dr

r6 + 1

= 3
1

2π

∫

∞

−∞

ω4dω

ω6 + 1

= 3

∥

∥

∥

∥

s2

(s + 1)(s2 + s + 1)

∥

∥

∥

∥

2

H2

= 1.
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The MATLAB code is given in ps61 6242 2004.m. Since matrix W is very poorly
conditioned, a regularization approach is used. With ak = 1/k, as suggested, the
resulting approximations are very low quality. Performance of the algorithm gets
better when pole locations ak = k are added.

Problem 6.2

(a) Is it true or false: if f : [0, 1] 7→ (−∞, 0) is convex then 1/f is convex
as well?

False. For example, take f(t) = t − 2: then 1/f(0) = −1/2, 1/f(1) = −1, but
1/f(1/2) = −2/3 > 1/2(−1/2−1). In fact,it can be shown that, under the assump-
tions made, function 1/f is concave!

(b) Is it true or false: the sum of two quasi-convex functions f1, f2 : Ω 7→
R is always quasi-convex?

False. For example, take Ω = R = {t}, f1(t) = −et, f2(t) = −e−t. Both functions
are monotonic, and hence quasi-convex. Nevertheless, their sum is not quasi-convex.

(c) For m, n ∈ {1, 2, 3, . . .} let Φ : Ωn,m 7→ R be the function

Φn,m(x) =

n
∑

k=1

∣

∣

∣

∣

p(k/n)

q(k/n)
− yk

∣

∣

∣

∣

,

where

p(t) = p0 + p1t + · · ·+ pmtm, q(t) = 1 + q1t + · · ·+ qmtm,

and Ωn,m = {x} is the set of vectors

x = [p0; p1; . . . ; pm; q1; q2; . . . ; qm; y1; y2; . . . ; yn]

such that q(t) 6= 0 for all t ∈ [0, 1]. For which values of m, n ∈
{1, 2, 3, . . .} is Φn,m quasi-convex?

False. Take the two points x1, x2 ∈ Ω, defined by

p1(t) ≡ 1, q1(t) ≡ 1 + t/2, y1
k = (1 + k/2n)−1,
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and
p2(t) ≡ 1, q2(t) ≡ 1 − t/2, y1

k = (1 − k/2n)−1,

respectively. Note that Φ(x1) = Φ(x2) = 0. However, for the middle point x =
0.5(x1 + x2), defined by

p ≡ 1, q(t) ≡ 1, yk = (1 − k2/4n2),

produces Φ(x) > 0. Hence the level set {x : Φ(x) ≤ 0} is not convex.

Problem 6.3

(a) For every n ∈ {1, 2, . . .} and ǫ > 0, define N = N(n) and an affine
symmetric matrix function A = A(x) of vector

x = [b0; b1; . . . ; bn; a0; a1; . . . ; an−1; y1; . . . ; yN ]

such that, given b0, . . . , bn and a0, . . . , an−1, the inequality A(x) > 0 has a
solution with respect to y1, . . . , yN if and only if

b(ω2) > 0, a(ω2) > 0,
b(ω2)

a(ω2)
< 1 + ǫ ∀ ω ∈ R,

b(ω2)

a(ω2)
> 1 − ǫ ∀ |ω| ≤ 1,

and
b(ω2)

a(ω2)
< ǫ ∀ |ω| ≥ 1 + ǫ,

where

a(θ) = a0 + a1θ + · · ·+ an−1θ
n−1 + θn, b(θ) = b0θ + b1θ + · · · + bnθ

n.

First, note that the formulaion has to be modified in order for the problem to be
solvable. Indeed, the set of coefficients bk for which b(ω2) > 0 for all ω ∈ R is not

an open set. For example, the set of all pairs (b0, b1) ∈ R2 such that b0 + b1ω
2 > 0

for all ω is defined by the inequalities b0 > 0, b1 ≥ 0. Since the set of x such that
A(x) > 0 is always open, and linear projection of an open set is open as well, the
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construction is not possible, as requested. However, if one interprets positivity of a
polynomial

h(ω) = h0 + h1ω
2 + · · · + hnω

2n (6.1)

in a strict sense, meaning that the values of the ratio h(ω)/(1+ω2)n with ω ranging
over R are separated from zero, the desired A = A(x) can be constructed.

Indeed, the polynomial (6.1) can be represented by

h(ω)

(1 + ω2)n
= G(jω)′HG(jω),

where

H =











h0 0 . . . 0
0 h1
...

. . .

0 hn











, G(s) =
1

(s + 1)n











1
s
...
sn











.

Hence, according to the KYP lemma, strict positivity of h(ω)/(1+ω2)n is equivalent
to the existence of a symmetric matrix Q = Q′ such that the quadratic form

2x′Q(AGx + BGf) + (CGx + DGf)′H(CGx + DGf),

where matrices AG, BG, CG, DG define a minimal state space model of G, is strictly
positive definite. Hence, strict positivity of h(ω) is equivalent to solvability of the
semidefinite program

LG1QL′

G2 + LG2QL′

G1 + LG3HL′

G3 > 0,

where

LG1 =

[

I
0

]

, LG2 =

[

A′

G

B′

G

]

, LG3 =

[

C ′

G

D′

G

]

,

with respect to Q = Q′.

This observation allows one to convert the inequalities

a(ω2) > 0, b(ω2) > 0, (1 + ǫ)a(ω2) − b(ω2) > 0 ∀ ω ∈ R,

understood in a strict sense, into linear matrix inequalities with respect to the
coefficients of a, b and the auxiliary symmetric n-by-n matrices Q1, Q2, Q3. In all
three cases, matrices LG1, LG2, LG3 are the same, and the diagonal coefficients of H
depend on the coefficients of a, b differently:
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(a) for inequality a(ω2) > 0, use hk = ak for k = 0, 1, . . . , n − 1, and hn = 1;

(b) for inequality b(ω2) > 0, use hk = bk for k = 0, 1, . . . , n;

(c) for inequality (1 + ǫ)a(ω2) − b(ω2) > 0, use hk = (1 + ǫ)ak − bk for k =
0, 1, . . . , n − 1, and hn = 1 + ǫ − bn.

To convert the conditional inequalities

b(ω2) − (1 − ǫ)a(ω2) > 0 (|ω| ≤ 1), ǫa(ω2) − b(ω2) > 0 (|ω| ≥ 1 + ǫ), (6.2)

note that positivity of the polynomial in (6.1) for |ω| ≤ 1 is equivalent to positivity
of the rational function

h̃(jω) =

n
∑

k=0

hk

(1 + ω2)k

for all ω. Similarly, positivity of h(ω) for |ω| ≥ r > 0 is equivalent to positivity of
the rational function

n
∑

k=0

hn−k

r2k(1 + ω2)k

for all ω.

Since
n

∑

k=0

hk

(1 + ω2)k
= F (jω)′HF (jω),

where

F (s) =















1
1

s+1
1

(s+1)2

...
1

(s+1)n















,

h̃(jω) > 0 for all ω if and only if there exists a symmetric matrix P = P ′ such that
the quadratic form

2x′P (AFx + BFf) + (CF x + DF f)′H(CFx + DF f)

is strictly positive definite. Hence, strict positive definiteness of h̃(ω) is equivalent
to solvability of the semidefinite program

LF1PL′

F2 + LF2PL′

F1 + LF3HL′

F3 > 0,
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where

LF1 =

[

I
0

]

, LF2 =

[

A′

F

B′

F

]

, LF3 =

[

C ′

F

D′

F

]

,

with respect to P = P ′.

This observation allows one to convert the inequalities (6.2), understood in a strict
sense, into linear matrix inequalities with respect to the coefficients of a, b and the
auxiliary symmetric n-by-n matrices P1, P2. In both cases, matrices LF1, LF2, LF3

are the same, and the diagonal coefficients of H depend on the coefficients of a, b
differently:

(a) for inequality b(ω2) − (1 − ǫ)a(ω2) > 0, where |ω| ≤ 1, use hk = bk − (1 − ǫ)ak

for k = 0, 1, . . . , n − 1, and hn = bn − 1 + ǫ;

(c) for inequality ǫa(ω2)−b(ω2) > 0, where |ω| ≥ 1+ǫ, use hk = r−2k(ǫan−k−bn−k)
for k = 1, . . . , n, and h0 = ǫ − bn.

(b) Use the result from (a) and a semidefinite program solver (see sec-
tion 4 of Lecture 9 for some options) to write a MATLAB code for
designing high quality low pass filters, in the form of a stable n-th
order transfer function G such that

‖G‖2
∞

< 1 + ǫ, |G(jω)|2 > 1 − ǫ ∀ ω ∈ [0, 1], |G(jω)|2 < ǫ ∀ ω ∈ [1 + ǫ,∞),

where ǫ > 0 is a given small parameter.

An implementation of the algorithm is given in ps63 6242 2004.m. It is common
for the LMI optimization algorithm to terminate without solving the LMI’s exactly,
but still provide a good quality filter. For example, for n = 10, the problem has a
solution with ǫ = 0.1.


