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Problem set 6 solutions!

Problem 6.1

(a) FIND AN ANALYTICAL EXPRESSION FOR THE COEFFICIENTS ci,...,C, OF THE
LINEAR COMBINATION

Gals) = X 1

k=1
WHICH MINIMIZES THE INTEGRAL

N 1 & . A
IG = Gl = o G(jw) = G (jw)Pdw,
WHERE
§l/3
G(s) =
(s) P

For the optimal coefficients ¢, the scalar product of the error transfer function
A(s) = G(s) — G,(s) with each of the basis functions 1/(s + 1/k) must be zero.

Note that, for a strictly proper rational transfer function H = H(s) with no poles in
the closed right half plane, the scalar product (H, H,) of H with H,(s) = 1/(s+a),

*(©A. Megretski, 2004
Wersion of December 2, 2004



where a > 0, is given by (H, H,) = H(a). Indeed, if h = h(t) is the inverse Laplace
transform of H, then the Parceval formulae yields

(H,H,) = /0 T e h(t)dt = H(a).

Hence, the optimal coefficients satisfy

n
Ck

G(1 = —, m=12...n,
(1/m) ; 1/m+ 1/k "
which yields ¢ = W~1g, where
1 1 1 1
C1 272;/3 14{1 1+11/2 T 1+1/n
Cc= C.2 y 9= m ) W= m e
c‘ w1/ 1 o
" 1+1/n 1+1/n 1/n+1/n
FOR n = 1,2,...,50, USE MATLAB TO COMPUTE AND COMPARE ||G — G| a2

AND |G = Gy |loe-
Since, for the optimal ¢y, functions Hy(s) = 1/(s 4+ 1/k) are orthogonal to G' — &
for k=1,2,...,n, it follows that G — G is orthogonal to GG, and hence

IG = Gliaz = Gl — |Gl
Here R

Gl = We=gWyg,

and ||G|%, can be calculated as
1 [ w?Bdw

o) w1
B 1/°° w3 dw
oy w4l

B 3/°° ridr
o T 0 T6+1

1 [ widw

IGIEe =

o ) w41
_ 3‘ s ’
(s+1)(s2+54+1)|| g

= 1.



The MATLAB code is given in ps61_6242_2004.m. Since matrix W is very poorly
conditioned, a regularization approach is used. With ax = 1/k, as suggested, the
resulting approximations are very low quality. Performance of the algorithm gets
better when pole locations a; = k are added.

Problem 6.2

(a)

IS IT TRUE OR FALSE: IF f: [0,1] — (—00,0) IS CONVEX THEN 1/f IS CONVEX
AS WELL?

False. For example, take f(t) = ¢t — 2: then 1/f(0) = —1/2, 1/f(1) = —1, but
1/f(1/2) = —2/3 > 1/2(—1/2—1). In fact,it can be shown that, under the assump-
tions made, function 1/f is concave!

IS IT TRUE OR FALSE: THE SUM OF TWO QUASI-CONVEX FUNCTIONS f1, fo: Q
R 1S ALWAYS QUASI-CONVEX?

False. For example, take Q = R = {t}, fi(t) = —¢', fo(t) = —e~'. Both functions
are monotonic, and hence quasi-convex. Nevertheless, their sum is not quasi-convex.
For m,n € {1,2,3,...} LET ®: ,,, — R BE THE FUNCTION

= [plk/m)
Beon) = 2 iy

Y

WHERE
p(t) =po+pit+-- +put™, qt) =1+ qt+ -+ gut™,
AND Q,,,, = {2} IS THE SET OF VECTORS
T = [P0; D15 - Pms Q15 425 -+ -5 G Y15 Y25 - -+ Y]

SUCH THAT ¢(t) # 0 FOR ALL ¢t € [0,1]. FOR WHICH VALUES OF m,n €
{1,2,3,...} 1S ®,,,,, QUASI-CONVEX?

False. Take the two points z!, 22 € 2, defined by

PP =1, ¢t ) =1+1/2, yp = (1+k/2n)7 ",



and
p2(t) = ]-7 q2(t) =1- t/2> yli = (1 - ]{?/2’)’1,)_1,

respectively. Note that ®(z') = ®(2?) = 0. However, for the middle point z =
0.5(z' + 2?), defined by

p= 17 Q(t> = 17 Yk = (1 - ]{72/4712),

produces ®(z) > 0. Hence the level set {x : ®(z) <0} is not convex.

Problem 6.3

(a) FOr EVERY n € {1,2,...} AND € > 0, DEFINE N = N(n) AND AN AFFINE
SYMMETRIC MATRIX FUNCTION A = A(z) OF VECTOR

x = [bo;b1;...;bnsa0; a1 .. Q13 Y1s - - UN]

SUCH THAT, GIVEN by, ..., b, AND ag,...,a,_ 1, THE INEQUALITY A(x) > 0 HAS A
SOLUTION WITH RESPECT TO ¥i,...,Yyyx IF AND ONLY IF

2
b(w?) >0, a(w?) >0, b(w)<1+€ VweR,

a(w?)
b(w?)
1-— <1
a(w2)> eV |wl <1,
AND b( 2)
w
>
() <eV|w>1+e¢,
WHERE

a(f) = ap+ a1l + -+ an_ 10"+ 0", b(0) =byd + b6 + - + b,0".

First, note that the formulaion has to be modified in order for the problem to be
solvable. Indeed, the set of coefficients by, for which b(w?) > 0 for all w € R is not
an open set. For example, the set of all pairs (b, b;) € R? such that by + byw? > 0
for all w is defined by the inequalities by > 0, b; > 0. Since the set of x such that
A(x) > 0 is always open, and linear projection of an open set is open as well, the



construction is not possible, as requested. However, if one interprets positivity of a
polynomial
h(w) = ho + hw® + - -+ + h,w*" (6.1)

in a strict sense, meaning that the values of the ratio h(w)/(1+w?)" with w ranging
over R are separated from zero, the desired A = A(x) can be constructed.

Indeed, the polynomial (6.1) can be represented by

h(w) oy .
_ o\ H
R G(jw) HG(jw),
where
ho O 0
0 hl 1 S
H — = -
: : Gl) (s+1)»
0 hy, s"

Hence, according to the KYP lemma, strict positivity of h(w)/(1+w?)™ is equivalent
to the existence of a symmetric matrix Q = @’ such that the quadratic form

20'Q(Agx + B f) + (Cex + Do f) H(Cgx + Da f),

where matrices Ag, Bg, Cq, Dg define a minimal state space model of G, is strictly
positive definite. Hence, strict positivity of h(w) is equivalent to solvability of the
semidefinite program

LGIQL/GQ _'_ LGQQL/C;:L + LG3HL/Gg > 0,

I Al C!
LG1:|:0},LG2:|:Bg}aLG3:|:DZ}>

with respect to Q = Q'.

This observation allows one to convert the inequalities

where

a(w?) >0, b(w?) >0, (1+e)a(w?) —bw?) >0 VweR,

understood in a strict sense, into linear matrix inequalities with respect to the
coefficients of a,b and the auxiliary symmetric n-by-n matrices @)1, Q2, Q3. In all
three cases, matrices Lg1, Lge, Las are the same, and the diagonal coefficients of H
depend on the coefficients of a, b differently:



(a) for inequality a(w?) > 0, use hy, = a for k=0,1,...,n—1, and h,, = 1;
(b) for inequality b(w?) > 0, use hy, = by, for k =0,1,...,n;
(c) for inequality (1 + €)a(w?) — b(w?) > 0, use hy = (1 + €)ap — by, for k =
0,1,...,n—1,and h, =1+¢€—b,.
To convert the conditional inequalities

b(w?) — (1 — )a(w?) >0 (Jw| £ 1), ea(w?) —bw?) >0 (Jw| >1+e), (6.2)

note that positivity of the polynomial in (6.1) for |w| < 1 is equivalent to positivity
of the rational function
- " hy
h(jw) = RV
— (1+w?)
for all w. Similarly, positivity of h(w) for |w| > r > 0 is equivalent to positivity of
the rational function

ra 2R (1 + w2)F
for all w.
Since .
M Py HF (jw),
—~(1+w?)
where ) )
1
1
s—i—l
F(s)=| G2 |,
1
L (s+1)»

h(jw) > 0 for all w if and only if there exists a symmetric matrix P = P’ such that
the quadratic form

22/ P(Apx + Bpf) + (Cpx + Dpf) H(Cpx + Drf)

is strictly positive definite. Hence, strict positive definiteness of B(w) is equivalent
to solvability of the semidefinite program

LFlpLIF2 + LFQPL;;l + LFgHL{F?’ > O,



where / / o
LFl:[O]’LF2:[B§:|’LF3:[D§:|’

with respect to P = P’.

This observation allows one to convert the inequalities (6.2), understood in a strict
sense, into linear matrix inequalities with respect to the coefficients of a,b and the
auxiliary symmetric n-by-n matrices P;, P,. In both cases, matrices Lgy, Lpo, Lps
are the same, and the diagonal coefficients of H depend on the coefficients of a, b
differently:

(a) for inequality b(w?) — (1 — €)a(w?) > 0, where |w| < 1, use hy = by — (1 — €)ay
fork=0,1,...,n—1,and h,, = b, — 1 + ¢

(c) for inequality ea(w?)—b(w?) > 0, where |w| > 1+¢, use hy, = r~
fork=1,...,n,and hg =€ — b,.

2k (Ean—k — bn—k)

USE THE RESULT FROM (A) AND A SEMIDEFINITE PROGRAM SOLVER (SEE SEC-
TION 4 OF LECTURE 9 FOR SOME OPTIONS) TO WRITE A MATLAB CODE FOR
DESIGNING HIGH QUALITY LOW PASS FILTERS, IN THE FORM OF A STABLE n-TH
ORDER TRANSFER FUNCTION (G SUCH THAT

G2 <1+e |GUW)P>1—-eVwel01], |GUw)><eV we[l+eo0),

WHERE € > 0 IS A GIVEN SMALL PARAMETER.

An implementation of the algorithm is given in ps63.6242_2004.m. It is common
for the LMI optimization algorithm to terminate without solving the LMI’s exactly,
but still provide a good quality filter. For example, for n = 10, the problem has a
solution with e = 0.1.



