Massachusetts Institute of Technology
 Department of Electrical Engineering and Computer Science
 6.242, Fall 2004: MODEL REDUCTION *

Take-home test 1^{1}

Test 1 papers are due by 4 pm on November 5, 2004, in Alex's office. Please, no cooperation regarding test problems!

Problem Q1.1

For each of the stetements below, state if it is true or false. For false statements, give a counterexample. For correct statements, give a brief sketch of a proof.
(a) If the pair (A, B) is controllable, and $A+A^{\prime}=-B B^{\prime}$ then A is a Hurwitz matrix.
(b) If $q(s)$ is a Hurwitz polynomial of order n, and $p_{1}, p_{2}, p_{3}, p_{4}$ are polynomials of order n then system with transfer matrix

$$
G(s)=\left[\begin{array}{ll}
p_{1}(s) / q(s) & p_{2}(s) / q(s) \\
p_{3}(s) / q(s) & p_{4}(s) / q(s)
\end{array}\right]
$$

has order not larger than n.
(c) If A is a Hurwitz matrix, the columns of a non-square matrix V are (some) eigenvectors of A, and $V^{\prime} V$ is not a singular matrix then $\hat{A}=\left(V^{\prime} V\right)^{-1} V^{\prime} A V$ is a Hurwitz matrix as well.

[^0](d) If A, B, C are matrices of dimensions n-by- n, n-by- 1 , and 1 -by- n respectively, and A is a Hurwitz matrix, then there exist a non-singular n-by- n matrix S such that, for
$$
\hat{A}=S^{-1} A S, \quad \hat{B}=S^{-1} B, \quad \hat{C}=C S,
$$
the solutions W_{o} and W_{c} of
$$
\hat{A} W_{c}+W_{c} \hat{A}^{\prime}=-\hat{B} \hat{B}^{\prime}, \quad W_{o} \hat{A}+\hat{A}^{\prime} W_{o}=-\hat{C}^{\prime} \hat{C},
$$
are equal.
(e) If a proper rational transfer function $G=G(s)$ without poles in the closed right half plane satisfies
$$
|G(j \omega)-1 /(1+j \omega)| \leq 1
$$
for all $\omega \in \mathbf{R}$, then the first Hankel singular number of G is not larger than 1.5.

Problem Q1.2

For all $a>0$, find Hankel singular numbers of the stable LTI system with transfer matrix

$$
G(s)=\left[\begin{array}{cc}
1 /(s+a) & 0 \\
1 & 1 /(s+a)
\end{array}\right] .
$$

Problem Q1. 3

For all values of $a \in \mathbf{R}$, find L2 gain of the system which maps scalar inputs $f(t)$ into outputs

$$
y(t)=\sin (f(t-a))
$$

Problem Q1.4

A, B, C are matrices of dimensions n-by- n, n-by- 1 , and 1-by- n respectively, (A is a Hurwitz matrix),

$$
U=\left[\begin{array}{l}
C(I-A)^{-1} \\
C(I-A)^{-2}
\end{array}\right], \quad V=\left[\begin{array}{ll}
(I-A)^{-1} B & (I-A)^{-2} B
\end{array}\right],
$$

matrix $U V$ is not singular, and

$$
C V\left(s I-(U V)^{-1} U A V\right)^{-1}(U V)^{-1} U B=1 / s^{2}
$$

Find $C(I-A)^{-4} B$.

Problem Q1.5

A, B, C are matrices of dimensions n-by- n, n-by- 1 , and 1 -by- n respectively, and A is a Hurwitz matrix. It is known that

$$
C(I-A)^{-1} B=0, C(I-A)^{-2} B=-1, C(I-A)^{-3} B=1 .
$$

Find positive lower bounds for Hankel singular numbers $\sigma_{1}(G)$ and $\sigma_{2}(G)$, where $G(s)=$ $C(s I-A)^{-1} B$.

[^0]: *(C)A. Megretski, 2004
 ${ }^{1}$ Version of November 3, 2004. Due November 5, 2004, 4pm.

