Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science
6.242, Fall 2004: MODEL REDUCTION *

Take-home test 1 solutions ${ }^{1}$

Problem Q1. 1

For each of the stetements below, state if it is true or false. For false statements, give a counterexample. For correct statements, give a brief SKETCH OF A PROOF.
(a) If the pair (A, B) is controllable, and $A+A^{\prime}=-B B^{\prime}$ then A is a Hurwitz matrix.

True.

Assume the contrary, i.e. that there exists $s \in \mathbf{C}$ such that $\operatorname{Re}(s) \geq 0$ and $\operatorname{det}(s I-$ $A)=0$. Let $f \in \mathbf{C}^{n}, f \neq 0$ be the corresponding eigenvector. Then $A f=s f$, $f^{\prime} A^{\prime}=\bar{s} f^{\prime}$, and hence multiplication of $A+A^{\prime}=-B B^{\prime}$ by f^{\prime} on the left and f on the right yields

$$
(s+\bar{s}) f^{\prime} f=-f^{\prime} B B^{\prime} f, \text { i.e. } 2 \operatorname{Re}(s)|f|^{2}=-\left|B^{\prime} f\right|^{2}
$$

Since $\operatorname{Re}(s) \geq 0$ and $|f|^{2}>0$, we conclude that $B^{\prime} f=0$, which contradicts the controllability assumption.

[^0](b) If $q(s)$ is a Hurwitz polynomial of order n, and $p_{1}, p_{2}, p_{3}, p_{4}$ ARE polynoMIALS OF ORDER n THEN SYSTEM WITH TRANSFER MATRIX
\[

G(s)=\left[$$
\begin{array}{ll}
p_{1}(s) / q(s) & p_{2}(s) / q(s) \\
p_{3}(s) / q(s) & p_{4}(s) / q(s)
\end{array}
$$\right]
\]

HAS ORDER NOT LARGER THAN n.

False.

For example, $q(s)=s+1, p_{1}(s)=p_{4}(s)=s-1, p_{2}(s)=p_{3}(s)=s+1$ yields $G(s)$ of order 2 .
(c) If A is a Hurwitz matrix, the columns of a non-square matrix V are (SOME) EIGENVECTORS OF A, AND $V^{\prime} V$ IS NOT A SINGULAR MATRIX THEN $\hat{A}=\left(V^{\prime} V\right)^{-1} V^{\prime} A V$ is a Hurwitz matrix as well.

True.

By assumption, $A V=V D$, where D is a diagonal matrix with eigenvalues of A on the diagonal. Hence $\hat{A}=D$ is a Hurwitz matrix.
(d) If A, B, C are matrices of dimensions n-BY- n, n-BY- 1 , AND 1 -BY- n RESPECtively, and A is a Hurwitz matrix, then there exist a non-singular n-BY- n MATRIX S SUCH THAT, FOR

$$
\hat{A}=S^{-1} A S, \quad \hat{B}=S^{-1} B, \quad \hat{C}=C S
$$

THE SOLUTIONS W_{o} AND W_{c} OF

$$
\hat{A} W_{c}+W_{c} \hat{A}^{\prime}=-\hat{B} \hat{B}^{\prime}, \quad W_{o} \hat{A}+\hat{A}^{\prime} W_{o}=-\hat{C}^{\prime} \hat{C},
$$

ARE EQUAL.

False.

For example, system with $n=1, A=-1, B=1, C=0$ is controllable but not observable. Hence, even after a change of coordinates, its observability Gramian will be zero, while its controllability Gramian will be positive.
(e) If a proper rational transfer function $G=G(s)$ without poles in the ClOSED RIGHT HALF PLANE SATISFIES

$$
|G(j \omega)-1 /(1+j \omega)| \leq 1
$$

for all $\omega \in \mathbf{R}$, then the first Hankel singular number of G is not LARGER THAN 1.5.

True.
Since

$$
\left\|\frac{1}{s+1}-\frac{1}{2}\right\|_{\infty}=\left\|\frac{1}{2} \frac{1-s}{1+s}\right\|_{\infty}=0.5
$$

we have

$$
\left\|G(s)-\frac{1}{2}\right\|_{\infty}=\left\|G(s)-\frac{1}{s+1}+\frac{1}{s+1}-\frac{1}{2}\right\|_{\infty} \leq 1+0.5=1.5
$$

Problem Q1.2

For all $a>0$, find Hankel singular numbers of the stable LTI system with TRANSFER MATRIX

$$
G(s)=\left[\begin{array}{cc}
1 /(s+a) & 0 \\
1 & 1 /(s+a)
\end{array}\right]
$$

Answer: $\sigma_{1}(G)=\sigma_{2}(G)=1 / 2 a$.
Indeed, a state space realization of the system is given by

$$
A=-a I_{2}, B=I_{2}, C=I_{2}, D=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] .
$$

For this realization, $W_{c}=W_{o}=(1 / 2 a) I_{2}$. Hence, the only non-zero Hankel singular values of G are $\sigma_{1}(G)=\sigma_{2}(G)=1 / 2 a$.

Problem Q1. 3

For all values of $a \in \mathbf{R}$, Find L2 Gain of the system which maps scalar inputs $f(t)$ into outputs

$$
y(t)=\sin (f(t-a))
$$

Answer: the gain equals 1 for all $a \in \mathbf{R}$.
Indeed, since $|\sin (h)| \leq|h|$ for all $h \in \mathbf{R}$, we have $|y(t)| \leq|f(t-a)|$ for all t. In addition, since $|\sin (h)| \leq 1$ for all $h \in \mathbf{R}$, we have $|y(t)| \leq 1$ for all $t \in \mathbf{R}$.

Now, for $a \geq 0$, we have

$$
\begin{gathered}
\int_{0}^{T}\left\{|f(t)|^{2}-|y(t)|^{2}\right\} d t= \\
\int_{0}^{T}|f(t)|^{2} d t-\int_{-a}^{T-a}|f(t)|^{2} \geq \\
-\int_{-a}^{0}|f(t)|^{2} d t
\end{gathered}
$$

which is bounded from below as $T \rightarrow+\infty$. For $a<0$ we have

$$
\begin{gathered}
\int_{0}^{T}\left\{|f(t)|^{2}-|y(t)|^{2}\right\} d t= \\
\int_{0}^{T}|f(t)|^{2} d t-\int_{-a}^{T-a}|f(t)|^{2} \geq \\
-\int_{T}^{T-a} d t=-a
\end{gathered}
$$

which is also bounded from below as $T \rightarrow+\infty$. Hence the L 2 gain is not larger than 1 . On the other hand, input $f(t) \equiv \delta=$ const produces system response $y(t) \equiv \sin (\delta)=$ const. Since $\sin (\delta) / \delta \rightarrow 1$ as $\delta \rightarrow 0, \delta \neq 0$, the L2 gain is at least as large as 1 .

Problem Q1.4

A, B, C are matrices of dimensions n-By- n, n-BY-1, AND 1 -BY- n RESPECTIVELY, (A is a Hurwitz matrix),

$$
U=\left[\begin{array}{l}
C(I-A)^{-1} \\
C(I-A)^{-2}
\end{array}\right], \quad V=\left[\begin{array}{ll}
(I-A)^{-1} B & (I-A)^{-2} B
\end{array}\right],
$$

matrix $U V$ IS NOT SINGULAR, AND

$$
C V\left(s I-(U V)^{-1} U A V\right)^{-1}(U V)^{-1} U B=1 / s^{2}
$$

Find $C(I-A)^{-4} B$.
Answer: $C(I-A)^{-4} B=4$.
Indeed,

$$
\hat{G}(s)=C V\left(s I-(U V)^{-1} U A V\right)^{-1}(U V)^{-1} U B=1 / s^{2}
$$

is the reduced model of

$$
G(s)=C(s I-A)^{-1} B
$$

obtained using a projection method, in such a way that the linear span of the columns of V includes vectors $(s I-A)^{-k} B$ for $s=1, k=1,2$, and the linear span of the rows of U includes $C(s I-A)^{-k}$ for $s=1, k=1,2$. Hence the first 4 moments of G and \hat{G} at $s=1$ must be equal. Therefore, $C(I-A)^{-4} B$, as the 4 -th moment of G at $s=1$ times -1 , must be equal to minus the 4 -th moment of $\hat{G}(s)=1 / s^{2}$ at $s=1$, i.e. $C(I-A)^{-4} B=-g_{3}$, where

$$
\frac{1}{s^{2}}=g_{0}+g_{1}(s-1)+g_{2}(s-1)^{2}+g_{3}(s-1)^{3}+O\left((s-1)^{4}\right) \text { as } s \rightarrow 1
$$

Since
$\frac{1}{s^{2}}=\left(1-(s-1)+(s-1)^{2}-(s-1)^{3}+\ldots\right)^{2}=1-2(s-1)+3(s-1)^{2}-4(s-1)^{3}+\ldots$, we have $C(I-A)^{-4} B=4$.

Problem Q1.5

A, B, C are matrices of dimensions n-BY- n, n-BY-1, AND 1 -BY- n RESPECTIVELY, and A is a Hurwitz matrix. It is known that

$$
C(I-A)^{-1} B=0, C(I-A)^{-2} B=-1, C(I-A)^{-3} B=1
$$

Find positive lower bounds for Hankel singular numbers $\sigma_{1}(G)$ and $\sigma_{2}(G)$, where $G(s)=C(s I-A)^{-1} B$.

Answer: $\sigma_{1}(G) \geq 2, \sigma_{2}(G) \geq 1$ (though better lower bounds can be found).
To get the lower bound for $\sigma_{1}(G)$, use Theorem 5.5 from lecture notes with $s=1$, which implies that

$$
W_{c} \geq W_{c}^{-}=2(I-A)^{-1} B B^{\prime}\left(I-A^{\prime}\right)^{-1}, \quad W_{o} \geq W_{o}^{-}=2\left(I-A^{\prime}\right)^{-1} C^{\prime} C(I-A)^{-1}
$$

Hence

$$
\sigma_{1}(G) \geq \lambda_{\max }\left(W_{c}^{-} W_{o}^{-}\right)^{1 / 2}=\left|2 C(I-A)^{-2} B\right|=2
$$

Getting a lower bound for $\sigma_{2}(G)$ is more difficult. Let

$$
H_{0}(s)=\sqrt{2} \frac{G(s)-G(1)}{s-1}=\sum_{k=0}^{\infty} h_{k} \frac{\sqrt{2}(s-1)^{k}}{(s+1)^{k+1}}
$$

be the expansion of the Laplace transform of the causal part of system response to input $f_{0}(t)=\sqrt{2} e^{t} u(-t)$ (Laplace transform $\sqrt{2} /(s-1)$. Note that

$$
h_{0}=-C(I-A)^{-2} B=1, \quad h_{1}=2 C(I-A)^{-2} B=2 .
$$

System response $h_{1}(t)$ to anti-causal input $f_{1}(t)$, defined by its Laplace transform $F_{1}(s)=$ $\sqrt{2}(s+1) /(s-1)^{2}$, is given by

$$
H_{1}(s)=\sum_{k=0}^{\infty} h_{k+1} \frac{\sqrt{2}(s-1)^{k}}{(s+1)^{k+1}}
$$

Since $\sigma_{2}(G)$ is not smaller than the minimal (over $\alpha \in \mathbf{R}$) value of

$$
\sum_{k=0}^{\infty}\left|h_{k} \cos (\alpha)+h_{k+1} \sin (\alpha)\right|^{2}
$$

and

$$
\sum_{k=0}^{\infty}\left|h_{k}\right|^{2}<\infty
$$

a simple calculation shows that $\sigma_{2}(G) \geq 1$.

[^0]: *(C)A. Megretski, 2004
 ${ }^{1}$ Version of November 8, 2004.

