Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science
6.242, Fall 2004: MODEL REDUCTION *

Take-home test 2^{1}

Problem Q2.1

Construct a strictly proper rational transfer function $G=G(s)$ with no poles in the closed right half plane for which there exists a unique first order transfer function $\hat{G}=\hat{G}(s)$ such that $G(1)=\hat{G}(1)$, and $G(j)=\hat{G}(j)(j=\sqrt{-1})$, and this \hat{G} has a pole with positive real part. (As usually, G and \hat{G} have real coefficients.)

Problem Q2.2

Proper transfer function $\Delta=\Delta(s)$ with no poles in the closed right half plane is such that $\Delta(1)=a$, where $a \in \mathbf{R}$ is a parameter. What is the minimal possible value of the integral

$$
\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{|\Delta(j \omega)|^{2} d \omega}{1+\omega^{2}} ?
$$

Problem Q2.3

Among all proper rational transfer functions $G=G(s)$ with not more than one pole in the right half plane find the one for which $\left\|G(s)-1 /\left(s^{2}+s+1\right)\right\|_{\infty}$ is minimal.

[^0]
Problem Q2.4

G is a 100 -th order rational transfer function with no poles in the right half plane, such that $|G(j \omega)|=1$ for all $\omega \in \mathbf{R}$. Find all possible values of the 10 -th Hankel singular number of $\Delta(s)=G(s)-1 /(s+1)$. Explain your answer.

Problem Q2.5

Find a positive integer n and an affine symmetric matrix-valued function $\alpha=\alpha(z)$ of a real vector parameter $z \in \mathbf{R}^{n+3}$, such that the conditions $a_{0}>0$ and

$$
\sup _{\omega \in \mathbf{R}}\left|\frac{b_{0}+b_{1} \omega^{2}}{a_{0}+\omega^{2}}-\frac{1}{\left(\omega^{2}+1\right)^{2}}\right|<\frac{1}{2}
$$

are jointly satisfied if and only if there exist real numbers y_{1}, \ldots, y_{n} such that $\alpha(z)>0$ for

$$
z=\left[\begin{array}{c}
a_{0} \\
b_{0} \\
b_{1} \\
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]
$$

[^0]: *(C)A. Megretski, 2004
 ${ }^{1}$ To be returned by 2.30 pm on December 8, 2004.

