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Problem Q2.1

Construct a strictly proper rational transfer function G = G(s) with no poles in the closed
right half plane for which there exists a unique first order transfer function Ĝ = Ĝ(s) such
that G(1) = Ĝ(1), and G(j) = Ĝ(j) (j =

√
−1), and this Ĝ has a pole with positive real

part. (As usually, G and Ĝ have real coefficients.)

Problem Q2.2

Proper transfer function ∆ = ∆(s) with no poles in the closed right half plane is such
that ∆(1) = a, where a ∈ R is a parameter. What is the minimal possible value of the
integral
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Problem Q2.3

Among all proper rational transfer functions G = G(s) with not more than one pole in
the right half plane find the one for which ‖G(s) − 1/(s2 + s + 1)‖∞ is minimal.
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Problem Q2.4

G is a 100-th order rational transfer function with no poles in the right half plane, such
that |G(jω)| = 1 for all ω ∈ R. Find all possible values of the 10-th Hankel singular
number of ∆(s) = G(s) − 1/(s + 1). Explain your answer.

Problem Q2.5

Find a positive integer n and an affine symmetric matrix-valued function α = α(z) of a
real vector parameter z ∈ Rn+3, such that the conditions a0 > 0 and
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are jointly satisfied if and only if there exist real numbers y1, . . . , yn such that α(z) > 0
for
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