Massachusetts Institute of Technology
 Department of Electrical Engineering and Computer Science
 6.242, Fall 2004: MODEL REDUCTION *

Take-home test 2 solutions ${ }^{1}$

Problem Q2.1

Construct a strictly proper rational transfer function $G=G(s)$ with no POLES IN THE CLOSED RIGHT HALF PLANE FOR WHICH THERE EXISTS A UNIQUE FIRST ORDER TRANSFER FUNCTION $\hat{G}=\hat{G}(s)$ SUCH THAT $G(1)=\hat{G}(1)$, AND $G(j)=\hat{G}(j)$ $(j=\sqrt{-1})$, and this \hat{G} has a pole with positive real part. (As usually, G and \hat{G} Have real COEFFICIENTS.)

One such G is given by

$$
G(s)=\frac{1}{5} \frac{2 s-1}{s 62+s+1}+\frac{56}{15} \frac{1+s^{2}}{(1+s)^{3}} .
$$

According to theorem 7.3, if a proper first order transfer function \hat{G} matching three moments of G exists, then it is a unique transfer function with this property. Hence, to construct an example, pick an arbitrary \hat{G} (strictly proper, first order, unstable) at the beginning, and then find a stable strictly proper transfer function G of arbitrary order to match the values of \hat{G} at $s=1$ and $s=j$.

To keep calculations simple, use $\hat{G}(s)=1 /(2-s)$, and then search for G in the form

$$
G(s)=\frac{c_{1} s+c_{0}}{s^{2}+s+1}+c_{2} \frac{1+s^{2}}{(1+s)^{3}} .
$$

[^0](It was necessary to have at least three free coefficients; the denominator $s^{2}+s+1$ was chosen because its value j at $s=j$ is "simple", the numerator $1+s^{2}$ was chosen to be zero at $s=j$.) Matching the values at $s=j$ requires $c_{1}=2 / 5$ and $c_{0}=-1 / 5$. Taking this into account, matching the values at $s=1$ requires $c_{2}=56 / 15$.

Problem Q2.2

Proper transfer function $\Delta=\Delta(s)$ With no poles in the closed right half plane is such that $\Delta(1)=a$, where $a \in \mathbf{R}$ is a parameter. What is the MINIMAL POSSIBLE VALUE OF THE INTEGRAL

$$
\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{|\Delta(j \omega)|^{2} d \omega}{1+\omega^{2}} ?
$$

The minimal value of the integral equals $a^{2} / 2$.
It is easy to see that this value can be achieved using a constant $\Delta(s) \equiv a$. On the other hand, for $F(s)=\Delta(s) /(s+1)$, equality $F(1)=a / 2$ is satisfied. Hence, for the impulse response $f=f(t)$ of transfer function $F=F(s)$, the Cauchy inequality yields

$$
\begin{gathered}
\frac{a^{2}}{4}=\left(\int_{0}^{\infty} f(t) e^{-t} d t\right)^{2} \leq \\
\leq \int_{0}^{\infty}|f(t)|^{2} d t \cdot \int_{0}^{\infty} e^{-2 t} d t=\frac{1}{2} \int_{0}^{\infty}|f(t)|^{2} d t
\end{gathered}
$$

Therefore

$$
\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{|\Delta(j \omega)|^{2} d \omega}{1+\omega^{2}}=\int_{0}^{\infty}|f(t)|^{2} d t \geq \frac{a^{2}}{2}
$$

Problem Q2.3

Among all proper rational transfer functions $G=G(s)$ with not more THAN ONE POLE IN THE LEFT HALF PLANE FIND THE ONE FOR WHICH $\| G(s)-1 /\left(s^{2}+\right.$ $s+1) \|_{\infty}$ IS MINIMAL.

In the original version, this problem was formulated with the word "right" instead of "left", which led to a "trivial" solution $G(s)=1 /\left(s^{2}+s+1\right)$.

Here is a solution of the more interesting version, where the answer is

$$
G(s)=\frac{\frac{1-\sqrt{5}}{4} s+\frac{1+\sqrt{5}}{4}}{s+\frac{3-\sqrt{5}}{\sqrt{5}-1}} \approx \frac{-0.309 s+0.809}{s+0.618}
$$

As stated, the problem relates to the proof of the AAK theorem, in the special case when a Hankel optimal ($n-1$)-st order approximation \hat{H} of an n-th order transfer function H is sought $\left(H(s)=1 /\left(s^{2}+s+1\right)\right.$ and $n=2$ in this problem). From the proof of the AAK theorem, it is known that a Hankel optimal approximation \hat{H} of order 1 can be constructed in such a way that $\hat{H}-H$ equals a constant times an all-pass transfer function. Therefore, the optimal G can be found in the form $G=\hat{H}$.

To actually calculate \hat{H}, assume it is of a general form

$$
\hat{H}(s)=\frac{b_{1} s+b_{0}}{s+a}
$$

and find b_{1}, b_{0}, a, σ from the identity

$$
\frac{b_{1} s+b_{0}}{s+a} \frac{1}{s^{2}+s+1}=\sigma \frac{(s-a)\left(s^{2}-s+1\right)}{(s+a)\left(s^{2}+s+1\right)} .
$$

Comparing the coefficients at both sides of the equality yields a system of equations

$$
\begin{aligned}
b_{1} & =\sigma \\
b_{1}+b_{0} & =-(1+a) \sigma \\
b_{1}+b_{0}-1 & =(1+a) \sigma \\
b_{0}-a & =-a \sigma
\end{aligned}
$$

Solving it yields two solutions. The one with the smallest absolute value of σ is given by

$$
\sigma=b_{1}=\frac{1-\sqrt{5}}{4}, \quad b_{0}=\frac{1+\sqrt{5}}{4}, \quad a=\frac{3-\sqrt{5}}{\sqrt{5}-1} .
$$

Problem Q2.4

G IS A 100-TH ORDER RATIONAL TRANSFER FUNCTION WITH NO POLES IN THE RIGHT half Plane, such that $|G(j \omega)|=1$ for all $\omega \in \mathbf{R}$. Find all possible values of THE 10-TH HANKEL SINGULAR NUMBER OF $\Delta(s)=G(s)-1 /(s+1)$. Explain YOUR ANSWER.

The answer is $\sigma_{10}(\Delta)=1$ (and, actually, $\sigma_{k}(\Delta)=1$ for $k=1,2, \ldots, 99$).
To prove this, take into account the following general remark: if G_{1} and G_{2} are stable transfer functions, and the order of $G_{1}-G_{2}$ is 1 , then $\sigma_{k}\left(G_{1}\right) \geq \sigma_{k+1}\left(G_{2}\right)$ for all k. Indeed, if $\sigma_{k}\left(G_{1}\right)<\sigma_{k+1}\left(G_{2}\right)$ then, according to the AAK theorem, there exists $\delta=\delta(s)$ of order less than k such that $\sigma_{1}\left(G_{1}-\delta\right)<\sigma_{k+1}\left(G_{2}\right)$. Equivalently,

$$
\sigma_{1}\left(G_{2}-\left(G_{2}-G_{1}+\delta\right)\right)<\sigma_{k+1}\left(G_{2}\right)
$$

which is impossible since $G_{2}-G_{1}+\delta$ has order less than $k+1$.
Note that G is an all-pass stable transfer function of order 100 , and hence $\sigma_{k}(G)=1$ for $k=1,2, \ldots, 100$. Applying the "general remark" with $G_{1}=\Delta, G_{2}=G$, and $k=10$, yields $\sigma_{10}(\Delta) \geq \sigma_{11}(G)=1$. Applying the "general remark" with $G_{1}=G, G_{2}=\Delta$, and $k=9$, yields $1=\sigma_{9}(G) \geq \sigma_{10}(\Delta)$. Hence $\sigma_{10}(\Delta)=1$.

Problem Q2.5

Find a positive integer n And an affine symmetric matrix-valued function $\alpha=\alpha(z)$ OF A REAL VECTOR PARAMETER $z \in \mathbf{R}^{n+3}$, SUCH THAT THE CONDITIONS $a_{0}>0$ AND

$$
\sup _{\omega \in \mathbf{R}}\left|\frac{b_{0}+b_{1} \omega^{2}}{a_{0}+\omega^{2}}-\frac{1}{\left(\omega^{2}+1\right)^{2}}\right|<\frac{1}{2}
$$

ARE JOINTLY SATISFIED IF AND ONLY IF THERE EXIST REAL NUMBERS y_{1}, \ldots, y_{n} SUCH THAT $\alpha(z)>0$ FOR

$$
z=\left[\begin{array}{c}
a_{0} \\
b_{0} \\
b_{1} \\
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]
$$

One possible solution has $n=12$ and

$$
\alpha(z)=\left[\begin{array}{cc}
L_{2}^{\prime} P_{+} L_{1}+L_{1}^{\prime} P_{+} L_{2}+S_{0}+S_{1} & 0 \\
0 & L_{2}^{\prime} P_{-} L_{1}+L_{1}^{\prime} P_{-} L_{2}+S_{0}-S_{1}
\end{array}\right]
$$

where

$$
P_{+}=\left[\begin{array}{lll}
y_{1} & y_{2} & y_{3} \\
y_{2} & y_{4} & y_{5} \\
y_{3} & y_{5} & y_{6}
\end{array}\right], \quad P_{-}=\left[\begin{array}{ccc}
y_{7} & y_{8} & y_{9} \\
y_{8} & y_{10} & y_{11} \\
y_{9} & y_{11} & y_{12}
\end{array}\right]
$$

$$
\begin{gathered}
L_{1}=\left[\begin{array}{cccc}
-1 & 0 & 0 & 1 \\
1 & -1 & 0 & 0 \\
0 & 1 & -1 & 0
\end{array}\right], \quad L_{2}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right], \\
S_{0}=\left[\begin{array}{cccc}
\frac{a_{0}+1}{2} & 0 & 0 & -\frac{1}{2} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
-\frac{1}{2} & 0 & 0 & \frac{1}{2}
\end{array}\right], \quad S_{1}=\left[\begin{array}{cccc}
b_{0}+b_{1} & 0 & 0 & -b_{1} \\
0 & -1 & 1 & 0 \\
0 & 1 & -1-a_{0} & 0 \\
-b_{1} & 0 & 0 & b_{1}
\end{array}\right] .
\end{gathered}
$$

This solution can be explained using the KYP Lemma in the following way. First, note that the original inequality, after multiplication by $\left(a_{0}+\omega^{2}\right) /\left(\omega^{2}+1\right)$, can be re-written in the equivalent form

$$
\left|\frac{b_{0}+b_{1} \omega^{2}}{\omega^{2}+1}-\frac{a_{0}+\omega^{2}}{\left(\omega^{2}+1\right)^{3}}\right|<\frac{1}{2} \frac{a_{0}+\omega^{2}}{\omega^{2}+1} .
$$

This is equivalent to a pair of inequalities

$$
\frac{1}{2} \frac{a_{0}+\omega^{2}}{\omega^{2}+1} \pm\left[\frac{b_{0}+b_{1} \omega^{2}}{\omega^{2}+1}-\frac{a_{0}+\omega^{2}}{\left(\omega^{2}+1\right)^{3}}\right]>0
$$

which are further equivalent to positive definiteness of Hermitean forms

$$
\sigma_{ \pm}(x, f)=\sigma_{0}(x, f) \pm \sigma_{1}(x, f)
$$

where

$$
\begin{gathered}
x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right], \quad \sigma_{0}(x, f)=\frac{a_{0}}{2}\left|x_{1}\right|^{2}+\frac{1}{2}\left|f-x_{1}\right|^{2}, \\
\sigma_{1}(x, f)=b_{0}\left|x_{1}\right|^{2}+b_{1}\left|f-x_{1}\right|^{2}-a_{0}\left|x_{3}\right|^{2}-\left|x_{2}-x_{3}\right|^{2},
\end{gathered}
$$

on the subspaces defined by equalities

$$
j \omega L_{2}\left[\begin{array}{l}
x \\
f
\end{array}\right]=L_{1}\left[\begin{array}{l}
x \\
f
\end{array}\right]
$$

i.e.

$$
\begin{aligned}
j \omega x_{1} & =-x_{1}+f, \\
j \omega x_{2} & =-x_{2}+x_{1}, \\
j \omega x_{3} & =-x_{3}+x_{2},
\end{aligned}
$$

for all $\omega \in \mathbf{R}$. According to the KYP Lemma, this is equivalent to existence of symmetric 3-by-3 matrices $P_{ \pm}$such that $\alpha(z)>0$ (to see this, note that S_{0} and S_{1} are the matrices of σ_{0} and σ_{1} respectively).

[^0]: *(C)A. Megretski, 2004
 ${ }^{1}$ Version of December 8, 2004.

