
Chapter 1

Introduction

The main objective of these lectures is to provide a reasonably complete but compact in-
troduction to robust design and analysis of linear time invariant (LTI) feedback control for
systems which are linearizable, i.e. can be approximated well by finite order LTI models.
The modern approach, enabled by efficient computer-aided optimization algorithms, seeks
to utilize rigorous treatment of design specifications, combined with careful accounting of
model uncertainty and approximation errors. Typically, the need to use robust control
arises when working with applications which have a “complexity” element, manifesting
itself by the presence of non-standrad models (nonlinear, uncertain, time-varying, dis-
tributed), multiplicity of sensors and actuators, or when optimization of a quality factor
is the main concern.

The lectures will explain basic principles, mathematical results, and numerical im-
plementation strategies of LTI feedback design, including use of L2 gains or Integral
Quadratic Constraints for quantifying quality of linear approximations and feedback sys-
tem performance, use of generalized small gain conditions and convex optimization in
analysis of robustness to modeling errors and uncertain parameters, and use of Schur
decomposition for explicit optimization of linear feedback and reduced models of linear
systems. Among the remarkable mathematical results associated with the theory are the
Kalman-Yakubovich-Popov lemma describing the relation between frequency domain in-
equalities and stabilizing solutions of Riccati equations, the Adamyan-Arov-Krein theorem
on Hankel optimal model reduction, and the state space solution of H-Infinity optimiza-
tion problem. Practical implementation of these basic concepts and mathematical theory
rely on numerical linear algebra and convex optimization engines: linear equation solvers,
Schur decomposition, and LMI optimization (semidefinite programming).
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1.1 Example: Inverted Pendulum

with Control Delay

Consider the task of designing a linear controller K (more specifically, a finite order LTI
system with rational transfer function K(s)) with input θ = θ(t) (angular position of
a pendulum) and output v = v(t) (actuator torque command) to stabilize θ = θ(t) at
the upright position θ = 0 (see Figure 1.1), while assuming that pendulum equations are
given, after appropriate normalization of v, by
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Figure 1.1: Control of Inverted Pendulum

θ̈(t) = ω2

0 sin(θ(t)) + v(t− T ), (1.1)

which means a constant control delay by T units of time and absence of friction. Given
the values of T and ω2

0 = g/L (where g is free fall acceleration and L is pendulum length),
a basic task of feedback design is to assure local stability of the equilibrium θ(t) ≡ 0.

In this example, the original model is “complex”, in the sense that it involves a non-
linear component θ(t) 7→ sin(θ(t)) and an infinite order LTI component v(t) 7→ v(t− T ).
Application of modern control principles to the stabilization problem begins with finding
good finite order LTI approximation of (1.1), complete with error bounds, expressed in
terms of L2 gains or Integral Quadratic Constraints.

Memoryless nonlinear transformations, such as θ(t) 7→ sin(θ(t)), cannot be approx-
imated by the linear ones with arbitrary accuracy. As a compromise, higher quality of
approximation in a certain region of values of the input is achieved at the expense of
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lowering the quality in the complementing region. If the range of admissible values of θ(t)
is [−θ0, θ0], where θ0 ∈ (0, π), one can use sin(θ(t)) ≈ kθ(t), where

k =
1

2

(

1 +
sin(θ0)

θ0

)

defines the center line {(θ, kθ) : θ ∈ R} of the (non-convex) cone spanned by the points
(θ, sin(θ)) with |θ| ≤ θ0. This leads to a finite order LTI representation

sin(θ(t)) = ksinθ(t) + d−1

sin
wsin(t), (1.2)

visualized by the block diagram of Figure 1.2, where wsin is a scaled modeling error signal,
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Figure 1.2: Linearization of sin(·)

∆sin is the modeling error system, mapping esin to wsin according to

wsin = dsin(sin(θ)− ksinθ), (1.3)

and
esin(t) = dsinDsinθ(t), (1.4)

Dsin = 0.5(1− sin(θ0)/θ0).

A simple calculation shows that

∫ T

0

|wsin(t)|
2dt ≤

∫ T

0

|esin(t)|
2dt, (1.5)

provided that |θ(t)| ≤ θ0 for all t. Condition (1.5) serves as an L2 gain bound for the
modeling error system ∆sin, quantifying the approximation error subject to the assumption
|θ(t)| ≤ θ0. Approximation of nonlinear subsystems by the linear ones, combined with
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the use of conditional energy gain bounds in stability and performance analysis, is an
important component of modern control.

For the delay transformation v(t) 7→ v(t− T ), one can use representation of the form

v(t− T ) = v̂(t) + d−1

delwdel(t), (1.6)

v̂(t) = Cdxd(t) +Ddv(t), (1.7)

ẋd(t) = Adxd(t) + Bdv(t), (1.8)

where Ad, Bd, Cd, Dd are coefficient matrices of a stable LTI state space model approximat-
ing the delay, wdel(t) is scaled delay modeling error, and ddel > 0 is a scaling parameter. A
pure delay cannot be approximated by a finite order LTI system with arbitrary accuracy,
because the error is always large for high frequencies. As a compromise, the approximation
error is quantified by establishing an energy bound of the form

∫ T

0

|wdel(t)|
2dt ≤

∫ T

0

|edel(t)|
2dt, (1.9)

where
edel(t) = ddel(Cexd(t) +Dev(t)) (1.10)

is an auxiliary output of (1.8), defining edel as the result of applying a low-pass filter to v.
For example, when T > 0 is small enough, which makes the delay easier to approximate,
the coefficients in (1.7),(1.8),(1.10) can be defined by

Dd + Cd(sI − Ad)
−1Bd =

1− Ts/2

1 + Ts/2
, De + Ce(sI − A)−1Bd = ρ

s+ a

1 + Ts/2
,

where

ρ ≥ max
ω∈R

∣

∣

∣

∣

1 + jωT

jω + a

(

e−jωT −
1− jωT/2

1 + jωT/2

)∣

∣

∣

∣

,

and a > 0 is a parameter. The theory of efficient approximation of high (or infinite) order
LTI systems by systems of low order (model reduction) is an important part of modern
control.

Combining equations (1.1) - (1.10) with state space controller equations

v(t) = Cfxf (t) +Dfθ(t), (1.11)

ẋf (t) = Afxf (t) + Bfθ(t), (1.12)

where Af , Bf , Cf , Df are constant real coefficient matrices, and xf = xf (t) is the state of
the controller, yields LTI model (1.11)-(1.16) (see also Figure 1.3),
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Figure 1.3: Linearized pendulum model

θ̈ − ω2

0θ = ω2

0d
−1

sin
wsin + Cdxd(t) +Ddv(t) + d−1

delwdel, (1.13)

ẋd = Adxd +Bdv, (1.14)

esin = d1Dsinθ, (1.15)

edel = ddel(Cexd +Dev, (1.16)

where L2 gain from e = [esin; edel] to w = [wsin;wdel] is known to be not larger than 1.
According to the small gain theorem, a controller (1.11), (1.12) stabilizes system (1.1)
if the L2 gain from w to e in the LTI model (1.11)-(1.16) is less than 1. The feedback
design is now reduced to finding the coefficients of controller (1.11), (1.12) and the positive
coefficients dsin, ddel in (1.13) - (1.16) minimizing the L2 gain from w to e.

For dsin, ddel > 0 fixed, one can use the technique of designing LTI feedback control
minimizing an L2 gain in an LTI closed loop system, a major component of modern control
called H-Infinity optimization. Similarly, for a fixed controller (1.11), (1.12), one can use
semidefinite programming to minimize the L2 gain as a function of scaling parameters
dsin, ddel. Combined together, H-Infinity optimization and semidefinite programming form
an ad-hoc procedure of D-K iteration for designing robust feedback controllers.

Once a controller (1.11), (1.12) stabilizing (1.1) subject to the assumption |θ(t)| ≤ θ0
is designed, it remains to calculate the range of initial conditions in (1.1), (1.11), (1.12)
which guarantee that the assumption |θ(t)| ≤ θ0 is satisfied for all t ≥ 0. This can be
achieved by extracting Lyapunov functions for the closed loop system from the information
contained in dsin and ddel, made possible by the theory of system analysis using Integral

Quadratic Constraints.
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1.2 Example: Active Damping

for a Flexible Structure

Consider a situation where two low quality sensors and two weak actuators are used to
reduce oscilations induced in an undamped flexible medium by noisy disturbances. For
simplicity, the flexible medium is modeled as a chain of 4m (where m can be very large)
identical point masses moving in a single dimension and connected by identical springs,
with the sensors and actuators located at one quarter chain length from both ends of the
chain, as shown on Figure 1.4.
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Figure 1.4: spring chain

System equations are assumed to have the form

q̈1 = r(q2 − q1) + bw1,

q̈k = r(qk−1 + qk+1 − 2qk) + bwk, (k = 2, . . . ,m− 1)

q̈m = r(qm−1 + qm+1 − 2qm) + bwm + f1,

q̈k = r(qk−1 + qk+1 − 2qk) + bwk, (k = m+ 1, . . . , 3m− 1)

q̈3m = r(q3m−1 + q3m+1 − 2q3m) + bw3m + f2,

q̈k = r(qk−1 + qk+1 − 2qk) + bwk, (k = 3m+ 1, . . . , 4m− 1)

q̈4m = r(q4m−1 − q4m) + bw4m,

where qk is the displacement of the k-th mass, f1, f2 are the actuator forces, wk is the noisy
force disturbing the k-th mass, and r, b are constant positive coefficients. In addition, the
measurement process is modeled by

y1 = g1 + v1,

y2 = g2 + v2,

ġ1 = a(qm − g1),

ġ2 = a(q3m − g2),
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where y1, y2 are the mass position measurements, the differential equations for g1, g2 rep-
resent sensor inertia (a > 0 is a time constant parameter), and v1, v2 are measurement
noises. The objective is to design a feedback law defining f = [f1; f2] as a causal finite
order LTI function of measurement y = [y1; y2] which minimizes the mean square value of
|f |2 + |q2m|

2 while wi, vi are modeled as independent white noise stochastic processes.
The practical difficulty of this feedback design setup (apart from combining multiple

sensors and multiple actuators) is due to the very high order of the exact model. While
H2 optimization is available, in theory, to find the optimal feedback law y(·) 7→ f(·), the
resulting optimal controller has the same order as the open loop system (inputs f, w, v,
outputs y, q2m), which is impractical for large m. Therefore, for m ≫ 1, a model reduc-
tion technique is to be applied before feedback optimization, to produce a reduced order
approximated description of the open loop map. To account for the approximation error,
the resulting model will contain an uncertainty block, and will be solved by combining
H-Infinity optimization with semidefinite programming.


