
Massachusetts Institute of Technology

Department of Electrical Engineering and Computer Science

6.245: MULTIVARIABLE CONTROL SYSTEMS

by A. Megretski

Problem Set 4 Solutions 1

Problem 4.1T

For the following transfer matrices G, find co-prime factorization G =
D−1N , the ”natural” state space for the associated transfer matrix model,
and the corresponding ”natural” state space model.

(a) discrete time transfer matrix

G(z) =

[
1
z−1

1
z−1

1
z−1

1
z−1

]
.

Answer: one possible co-prime factorization G = D−1N is given by

D(z) =

[
z−1
z

0
−1 1

]
, N(z) =

[
1
z

1
z

0 0

]
.

The corresponding ”canonical” state space X ⊂ H2
2 (T) consists of all constant

functions

x(z) ≡
[
a
0

]
, a ∈ R,

with update/output equations

x+ = x+

[
1 1
0 0

]
w, y =

[
1 0
1 1

]
x(∞),

1Version of December 9, 2011.

2

which is equivalent to

a(t+ 1) = a(t) + [1 1]w(t), y(t) =

[
1
1

]
a(t).

Reasoning: the identity DG = N can be verified by a direct multiplication. To
see that the factorization G = D−1N is co-prime, i.e. that there exists ε > 0 such
that

D(z)′D(z) +N(z)′N(z) ≥ εI ∀ z ∈ D+ = {z ∈ C : |z| > 1},
note that D(z) is continuous on D+ ∪ {∞}, and not singular for all z ∈ D+ ∪ {∞}
except z = 1, at which point

D(z)′D(z) +N(z)′N(z) = D(1)′D(1) +N(1)′N(1) = 2I > 0.

Note that there is no co-prime factorization with D(z) = (1 − 1/z)I (the ”easy”
choice) because this would yield a double pole of D−1N at z = 1.

The ”canonical” state space X for G is the subset of all functions V ∈ H2
2 (T)

which can be approximated arbitrarily well by functions V0 ∈ H2
2 (T) of the form

V0 = NW0−DY0, whereW0, Y0 are Fourier transforms of square summable sequences
w0, y0 : Z→ R2 such that w0(t) = 0 and y0(t) = 0 for t ≥ 0.

Using the fact that zN(z) and zD(z) are polynomials in z while comparing the
coefficients at the z-expansions in the equality V0 = NW0 −DY0, one can see that
V0 has to be a constant function of the form

V0(z) ≡
[
a
0

]
= lim

z→0
z{N(z)W0(z)−D(z)Y0(z)}.

To see that a can be an arbitrary real number, use

W0(z) =

[
az
0

]
, Y0(z) =

[
0
0

]
.

The update/output laws for the canonical state x(t) ∈ H2
2 (T) defined by

x(t)(z) = zt[N(z)W̃t(z)−D(z)Ỹt(z) + x(0)(z)],

where

Wt(z) =
t−1∑
τ=0

w(τ)z−τ , Yt(z) =
t−1∑
τ=0

y(τ)z−τ ,

3

are given by
x+(t)(z) = z[x(t)(z)−D(z)y(t) +N(z)w(t)],

where
y(t) = D(∞)−1[x(t)(∞) +N(∞)w(t)].

Substituting

x(t)(z) ≡
[
a(t)

0

]
, D(∞) =

[
1 0
−1 1

]
, N(∞) = 0

yields the answer.

(b) continuous time transfer matrix

G(s) =

[
1/s −1/s
−1/s 1/s

]
.

Answer: one possible co-prime factorization G = D−1N is given by

D(s) =

[
s
s+1

0

1 1

]
, N(s) =

[
1
s+1

− 1
s+1

0 0

]
.

The corresponding ”canonical” state space X ⊂ H2
2 (jR) consists of all functions

x(s) ≡
[

a
s+1

0

]
, a ∈ R,

with update/output equations

dx(t)(s)

dt
=

[
1 −1
0 0

]
w(t), y(t) =

[
1 0
−1 1

]
2x(t)(1),

which is equivalent to

ȧ(t) = [1 − 1]w(t), y(t) =

[
1
−1

]
a(t).

Reasoning: the identity DG = N can be verified by a direct multiplication. To
see that the factorization G = D−1N is co-prime, i.e. that there exists ε > 0 such
that

D(s)′D(s) +N(s)′N(s) ≥ εI ∀ s ∈ C+ = {s ∈ C : Re{s} > 0},

4

note that D(s) is continuous on C+ ∪ {∞}, and not singular for all s ∈ C+ ∪ {∞}
except s = 0, at which point

D(s)′D(s) +N(s)′N(s) = D(0)′D(0) +N(0)′N(0) = 2I > 0.

Note that there is no co-prime factorization with D(s) = s
s+1

I (the ”easy” choice)
because this would yield a double pole of D−1N at s = 0.

The ”canonical” state space X for G is the subset of all functions V ∈ H2
2 (jR)

which can be approximated arbitrarily well by functions V0 ∈ H2
2 (jR) of the form

V0 = NW0−DY0, where W0, Y0 are Fourier transforms of square integrable functions
w0, y0 : R→ R2 such that w0(t) = 0 and y0(t) = 0 for t ≥ 0.

Using the fact that (s+1)N(s) and (s+1)D(s) are polynomials in s while comparing
the inverse Fourier transforms of both sides of V0 = NW0 −DY0, one can see that
V0 has to be a rational function of the form

V0(s) =

[
a
s+1

0

]
.

To see that a can be an arbitrary real number, use

W0(s) =

[
2a
1−s
0

]
, Y0(s) =

[
0
0

]
.

The canonical state x(t) ∈ H2
2 (jR) is defined by

x(t)(s) = ets[N(s)Wt(s)−D(s)Yt(s) + x(0)(s)],

where

Wt(s) =

∫ t

0

e−τsw(τ)dτ, Yt(s) =

∫ t

0

e−τsy(τ)dτ.

Substitution

x(t)(s) =

[
a(t)
s+1

0

]
,

followed by differentiation with respect to t yields[
ȧ(t)/(s+ 1)

0

]
= s

[
a(t)/(s+ 1)

0

]
+N(s)w(t)−D(s)y(t),

which is equivalent to the state space equations given above.

5

K(s) P0(s)h- - - -

6

r
e

−

u
v

Figure 1: Design objectives of Problem 2.1

Problem 4.2P

Consider the feedback design setup from Figure 1. Let us define closed
loop bandwidth of the feedback system as the largest ω0 > 0 such that
|S(jω)| ≤ 0.1 for all ω ∈ [0, ω0], where

S =
1

1 + P0K

is the closed loop sensitivity function (in this definition, the threshold
0.1 is a bit arbitrary).

It is frequently claimed that location of unstable zeros of P0 limits
the maximal achievable closed loop bandwidth. While mathematically
this is not exactly true, the only way to achieve a substantially larger
bandwidth is by making |S(jω)| extremely large at other frequencies.

You are asked to verify this for

P0(s) =
s− a

s(s+ 2a)
,

where a > 0 is a real parameter (determining location of the open loop
zero), using hinfsyn.m to estimate the maximal bandwidth achievable by a
stabilizing LTI controller K = K(s) of order not larger than 5, satisfying
the closed loop sensitivity magnitude bound |S(jω)| < 20 at all frequencies
ω, as a function of a 6= 0. Generate a plot of your estimate, as a function
of a > 0.
Hint: write an algorithm which attempts to achieve a given closed loop
bandwidth, using pre-designed low-pass filter, like the Butterworth fil-
ter, to incorporate the bandwidth constraint into H-Infinity optimiza-
tion. Once this is accomplished, use binary search to find (approximately)
the maximal bandwidth.

6

Conclusion: maximal achievable closed loop bandwidth grows linearly with a, at a
rate of at least 0.43a. The rate can be made slightly larger at the expense of using much
higher controller gains. See the plot on Figure 2.

Figure 2: Bandwidth vs. ”a” for Problem 4.2

Approach: since

aP0(as) = P1(s) =
s− 1

s(s+ 2)

for every a > 0, controller K0(s) stabilizes P0 and achieves bandwidth ab if and only if
controller K1(s) = K0(as)/a stabilizes P1 and achieves bandwidth b. Hence it is sufficient
to find the best achievable bandwidth for a = 1.

Figure 3: Open loop model for Problem 4.2

7

We use SIMULINK models ps42des.mdl (see Figure 3) and ps42test.mdl (see Fig-
ure 4) to define, respectively, the open and closed loop systems. It introduces two distur-

Figure 4: Closed loop model for Problem 4.2

bance inputs w1, w2 and three cost outputs e1, e2, e3:

• w1 is the ”main” input (reference/sensor noise);

• w2 is artificial small disturbance, to prevent sensor singularity due to the imaginary
axis pole of P0;

• e1 enforces the closed loop sensitivity bound |S| ≤ 20, frovided the overall closed
loop L2 gain in not larger than 1;

• e2 is defined using a low-pass filter W such that |W (jω)| ≥ 10 for |ω| ≤ b, where b is
the desired closed loop bandwidth, and therefore enforces the bandwidth constraint
frovided the overall closed loop L2 gain in not larger than 1;

• e3 is artificial small cost to prevent control singularity due to the fact that P0 is
strictly proper.

MATLAB function ps42.m controls design optimization and testing. The essential
part of its code is shown below:

function [K,S]=ps42(a,b,d)

s=tf(’s’); % useful constant

P0=(s-a)/(s*(s+2*a)); % the plant

[A,B,C,D]=butter(3,b,’s’); % Butterworth filter

W=ss(A,B,C,D);

W=(10/abs(squeeze(freqresp(W,1i*b))))*W;

assignin(’base’,’d’,d) % export variables

assignin(’base’,’P0’,P0)

assignin(’base’,’W’,W)

p=linmod(’ps42des’); % extract open loop

8

p=ss(p.a,p.b,p.c,p.d);

[K,G]=hinfsyn(p,1,1); % optimize controller

fprintf(’success flag for w0=%f: %f<1\n’,b,norm(G,Inf))

assignin(’base’,’K’,K) % export controller

S=linmod(’ps42test’); % extract closed loop

fprintf(’max(real(eig(A)))=%f\n’,max(real(eig(S.a))))

S=ss(S.a,S.b,S.c,S.d);

fprintf(’norm(S,Inf)=%f\n’,norm(S,Inf))

ww=logspace(-2,5,10000);

Sw=abs(squeeze(freqresp(S,1i*ww)));

k=find(Sw>0.1,1); % find actual bandwidth

w1=ww(k-1);

fprintf(’actual bandwidth: %f (vs. %f)\n’,w1,b)

At a = 1, b = 0.43, d = 0.001 the code generates a stabilizing controller K of order 5
which yields closed loop bandwidth of slightly more than 0.43. Logarithmic plots of the
closed loop sensitivity function and controller are provided on Figure 5.

Problem 4.3P

Continuous time scalar signal q = q(t) models the (one dimensional) posi-
tion of an oscillator driven by random forces in the absence of friction,
according to

q̈(t) + ω2
0q(t) = f1(t),

where f1 is a noise signal, and ω0 > 0 is a parameter. The result g(t)
of measuring q(t) in real time is modeled according to g(t) = q(t) + f2(t),
where f2 is another noise signal. Assuming that f = [f1; f2] is a normalized
vector-valued white noise, use h2syn.m to find an LTI system (a “filter”)
which takes g = g(t) as an input and outputs an estimate q̂ = q̂(t) of q = q(t),
minimizing the steady state value

J = lim
t→∞

E[|e(t)|2]

of the variance of the estimation error e = q − q̂. Plot the minimal J as
the function of ω0 > 0.
Hint: the system, as described, is not stabilizable (there is no provision
for a feedback loop from g back to f1). Therefore, before applying
h2syn.m, one has to ”massage” the setup into a stabilizable format. One

9

Figure 5: Closed loop Bode plots for Problem 4.2

way to do this is by starting with a particular filter F0 producing an
estimate q̂0 which achieves J <∞, and then using h2syn.m to design an LTI
filter which takes g−q̂0 as measurement, and outputs the optimal estimate
δ̂ of δ = q − q̂0, so that q̂ = q̂0 + δ̂ is the optimal estimate of q.

Conclusion: the minimal mean square estimation error decreases with as ω0 increases,
as shown on Figure 6.

The design uses H2 optimization according to the setup shown on Figure 7, where

W (s) =
1

s2 + ω2
0

, L(s) =
s2 + ω2

0

s2 + ω2
0 + L1s+ L2

, F0(s) =
L1s+ L2

s2 + ω2
0 + L1s+ L2

,

10

Figure 6: Minimal mean square estimation error in Problem 4.3

where L1 > 0 and L2 + ω0 > 0. Here W represents the original oscillator, F0 is the
classical output estimator for W , and L specifies the mandatory zeros of F0.

Figure 7: Design setup for Problem 4.3

Indeed, for a state space model for W , e.g.

ẋ1 = x2,

ẋ2 = −ω2
0x1 + f1,

y = x1 + f2,

11

the classical observer for q = x1 is

˙̂x1 = x̂2 + L1(y − x̂1),
˙̂x2 = −ω2

0x1 + L2(y − x̂1),
q̂ = x̂1,

which has transfer function F0 (from y to q̂). Also, an estimator F achieves a finite mean
square error if and only if both F and WF belong to class H2, which is equivalent to F
having representation of the form F = F0 + ∆L for some ∆ ∈ H2, which justifies the
use of the setup from Figure 7. This SIMULINK diagram, as well as the testing model

Figure 8: Test setup for Problem 4.3

shown on Figure 8, are controlled by MATLAB code ps43.m, the essential parts of which
are shown below:

function [J,F]=ps43(w0,L)

s=tf(’s’); % useful constant

F0=(s*L(1)+L(2))/(s^2+w0^2+s*L(1)+L(2));

W=1/(s^2+w0^2);

L=(s^2+w0^2)/(s+w0+1)^2;

assignin(’base’,’F0’,F0) % export variables

assignin(’base’,’W’,W)

assignin(’base’,’L’,L)

p=linmod(’ps43des’); % extract open loop

p=minreal(ss(p.a,p.b,p.c,p.d)); % remove uncontrollable modes

K=h2syn(p,1,1); % optimize

F=minreal(F0+K*L); % complete filter

assignin(’base’,’F’,F) % export variables

p=linmod(’ps43test’); % extract error system

G=minreal(ss(p.a,p.b,p.c,p.d)); % remove uncontrollable modes

J=norm(G)^2;

