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Problem Set 7 !

The problem set deals with H2 optimization.

Problem 7.1T
For all values of parameter a € R for which the CT H2 optimization setup
i(t) = ax(t) +u(t) +w(t), e(t)=az(t)+ult), y(t)=2x(t)+w(t)

is well-posed, find the optimal controller and the minimal cost.

Problem 7.2T
For all values of parameter a € R for which the DT H2 optimization setup
a(t+1) = ax(t) + u(t) + w(t), e(t) =x(t) +u(t), y(t)==z()+w(t)

is well-posed, find the optimal controller and the minimal cost.

Problem 7.3T

Consider a modification of the DT H2 optimization setup, where the only difference is
that, instead of minimizing the square of the H2 norm

|G|, = trace Yy g(t)'g(1),

t=0
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where g(t);2, is the closed loop unit sample response from disturbance input w to cost
output e H2 norm of the closed loop system, we minimize

T
|G|z = trace Y _ g(t)'g(1),

t=0

for a fixed T' (the controller still has to be a stabilizing finite order LTI one).
Assume that the original setup is well-posed, and J,, is the minimum of ||G||%,. Let
Jr will be the minimum of ||G||3,; in the modified setup. Is it always true that

T—o0

Sketch a proof or give a counterexample.

Problem 7.4P

The standard MATLAB’s DT H2 optimization function h2syn.m imposes unnecessary
constraints onto the setup, and unreasonably optimizes over strictly proper feedback con-
trollers. It also has a tendency to crash without a legitimate reason.

(a) Using MATLAB’s function dare.m for finding stabilizing solutions of discrete time
algebraic Riccati equations, write your own code implementing DT H2 optimization.
Your code should still require well-posedness and D,y = 0, but, unlike h2syn.m, it
has to work in the case when D1y # 0, or D15 = 0, or Dy; = 0, and should optimize
over the set of all causal stabilizing controllers, not necessarily the strictly causal
ones.

Testing code like the one requested in (a) can be a challenge. The following tasks are
aimed at helping with this by establishing numerically verifiable necessary conditions of
optimality in DT H2 optimization.

(b) For a DT state space model
G molt+1) = aze(t) + bw(t), elt) = cau(t) + du(t), (1)
where a is a Schur matrix, let P be the unique solution of the Lyapunov equation
P —aPd =bb. (2)

Express the square J of H2 norm of G in terms of d, ¢, and P.



(c)

Show that combining feedback equations
u(t) = Cpap(t) + Dywp(t), ap(t+1) = App(t) + Byy(t),
where z¢(t) € RY, with plant equations
x(t+1) = Azx(t) + Biw(t) + Bau(t), e = Cix + Dyjw + Dipu, y = Cox + Doyw

results in state space model (1) for which

b Af B
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where M; are matrices which depend only on A, B;, C;, D;;, N (and do not depend
on Ay, By, Cy, D). Give explicit expressions for matrices M.

When the coefficients Ag, By, Cy, Dy of Lk (and hence the coefficients a, b, ¢,d of
the closed loop system) are differentiable functions of a scalar real parameter r,
differentiating (2) with respect to r yields

P —aPd = aPd + aPd + by + b, (3)

where P, a, and b are the derivatives of P, a, and b with respect to 7. This means
that P can be computed by solving a Lyapunov equation, once P, a, b, a, b are known.
Use this observation to express J in terms of Af, B I3 C'f, Df, where all derivatives
are with respect to 7.

Hint: multiply (3) by the unique solution ) = @’ of = d’Qa + C'C, and take
trace of both sides.

Use the result from (d) to formulate necessary conditions of optimality in H2 opti-
mization. Use these conditions in a code verifying your solution to (a).



