
Problem Set 10 Solutions

May 14, 2005

5.5.2

The problem is
minimize 10x1 + 3x2

subject to 5x1 + x2 ≥ 4, x1, x2 ∈ {0, 1}.
In Exercise 5.1.2, we found that the dual optimal value is q∗ = 8. Now, consider the constraint-
relaxed problem

minimize 10x1 + 3x2

subject to 5x1 + x2 ≥ 4, 0 ≤ xi ≤ 1, i ∈ {0, 1}.
Since 10x1 + 3x2 = 2(5x1 + x2) + x2 ≥ 8, we have that the optimal value of the above LP
problem is f̃ = 8 attained at the point x̃ = (4

5
, 0). Hence Lagrangian relaxation and constraint

relaxation give the same lower bound LB = 8.
By rounding the solution x̃, we obtain a feasible point (1, 0) for the original problem, so

that we can set the upper bound to be UB = 10.
We now branch to the following two solutions/nodes of the branch-and-bound tree:
(a) x1 = 0: The relaxed problem is

minimize 3x2

subject to x2 ≥ 4, 0 ≤ x2 ≤ 1.

The problem is infeasible, so the node is fathomed.
(b) x1 = 1: The relaxed problem is

minimize 10 + 3x2

subject to 5 + x2 ≥ 4, 0 ≤ x2 ≤ 1.

The solution is (1, 0), and because this is integer and the only remaining feasible solution, it
is optimal.

5.5.4
(a) First, by induction, we show that xk ≤ x∗ for all k. Note that the initial point x0 is chosen

1

such that x0 ≤ x∗, and assume that xk ≤ x∗ for some k. We need to show that xk+1 ≤ x∗,
where xk+1 is given by

xk+1 = xk + (ξ − xk
i)ei,

with gi(x
k) > 0 and ξ being the smallest element of Xi such that gi(x

k + (ξ − xk
i)ei) ≤ 0.

Consider the point
overlinex = (xk

1, . . . , x
k
i−1, x

∗
i , x

k
i+1, . . . , x

k
n). If we prove that

gi(x) ≤ 0, (1)

then by the definition of ξ, we will have ξ ≤ x∗i , which by inductive hypothesis implies that
xk+1 ≤ x∗. To prove the relation (1), consider points

x̃1 = (xk
1, x

∗
2, x

∗
3, . . . , x

∗
n),

x̃2 = (xk
1, x

k
2, x

∗
3, . . . , x

∗
n),

x̃i−1 = (xk
1, x

k
2, . . . , x

k
i−1, x

∗
i , . . . , x

∗
n),

x̃i+1 = (xk
1, x

k
2, . . . , x

k
i−1, x

∗
i , x

k
i+1, x

∗
i+2, . . . , x

∗
n),

x̃n = x = (xk
1, . . . , x

k
i−1, x

∗
i , x

k
i+1, . . . , x

k
n).

Evidently,
x∗ ≥ x̃1 ≥ x̃2 ≥ · · · x̃i−1 ≥ x̃i+1 ≥ · · · ≥ x̃n = x.

By using the fact x∗ ≥ x̃1, the feasibility of x∗, and the monotonicity property of gj’s, we have

0 ≥ gj(x
∗) ≥ gj(x̃

1), 2 ≤ j ≤ n.

Then, similarly, we obtain

0 ≥ gj(x̃
1) ≥ gj(x̃

2), 3 ≤ j ≤ n.

By repeating this, we can see that

0 ≥ gj(x̃
i−1), i ≤ j ≤ n.

Then by using x̃i−1 ≥ x̃i+1, we similarly obtain

0 ≥ gj(x̃
i+1), i + 2 ≤ j ≤ n and j = i.

Proceeding in this way, we finally have

0 ≥ gi(x̃
n) = gi(x),

thus showing relation (1).
Since at every iteration we increase some component xi and each xi can be adjusted at

most |Xi| times (| · | denotes the cardinality of a set), the total number of iterations is at most∑n
i=1 |Xi|, which is finite. If the problem is feasible, then by construction, the algorithm ter-

minates with a feasible point, say x̃. Furthermore, by the preceding analysis, we have x̃ ≤ x∗,
which by monotonicity of f implies that f(x∗) ≥ f(x̃), so that x̃ is an optimal solution. This

2

optimal solution is the same as x∗ if and only if all points x ∈ X with x < x∗ are infeasible,
where x < x∗ means that xj ≤ x∗j for all j and xi < x∗i for some i.

(b) The method stops either yielding an optimal solution or not being able to find the
new iterate. In any case, since the number of increments cannot be larger then

∑n
i=1 |Xi|, the

algorithm must terminate in a finite number of steps.
In order to detect infeasibility, the starting point should be x0 with x0

i = minξ∈Xi
ξ for all

i. With this choice, if the problem is feasible, the algorithm will yield an optimal solution
[follows from part (a)].

Suppose now that the problem is infeasible and the algorithm terminates at some iteration
xk with gi(x

k) > 0 for some i such that

gi(x
k + (ξ − xk

i)ei) > 0, ∀ ξ ∈ Xi. (2)

Note that all x ∈ X with xj ≤ xk
j for some j are infeasible, for otherwise as seen in part (a)

the method will terminate with an optimal solution before reaching the point xk. Therefore,
if there is a feasible point y, then it must satisfy xk ≤ y. Applying the same reasoning as in
the proof of part (a), we can show that

gi(x
k + (yi − xk

i)ei) ≤ 0,

which contradicts (2). Therefore, whenever the method terminates because it can not generate
a new iterate [see Eq. (2)], we know that the problem is infeasible.

Here is an example showing that if x0 is not the lowest point of the grid X1×· · ·×Xn, then
the algorithm can fail. Let g1(x) = −x1+3x2, g2(x) = x1−3x2, X1 = X2 = {0, 1, 2}. It is easy
to see that the feasible set is singleton {(0, 0)}. However, unless x0 = 0, the algorithm will stop
not being able to find a new iterate, which can be misinterpreted as infeasibility of the problem.

(c) For all i 6∈ I, define
gi(x) = min

ξ∈Xi

ξ − e′ix,

so that the monotonicity property is satisfied for all gi. Note that gi(x) ≤ 0 for all i 6∈ I and
all x ∈ X, and therefore, at any iteration k, the algorithm never updates the i-th coordinate
of xk for any i 6∈ I.

5.5.6

Statement: Let E be a matrix with entries -1, 0, or 1, and at most two nonzero entries
in each of its columns. Show that E is totally unimodular if and only if the rows of E can
be divided into two subsets such that for each column with two nonzero entries, the following
hold: if the two nonzero entries in the column have the same sign, their rows are in different
subsets, and if they have the opposite sign, their rows are in the same subset.

Solution: Note that E is totally unimodular if and only if its transpose E ′ is totally
unimodular. Hence according to Exercise 5.5.5, an m × n matrix E is totally unimodular if
and only if every Iı{1, . . . , m} can be partitioned into two subsets I1 and I2 such that

| ∑

i∈I1

eij −
∑

i∈I2

eij| ≤ 1, ∀ j = 1, . . . , n.

3

Let E be an m× n matrix with entries eij ∈ {−1, 0, 1}, and such that each of its columns
contains at most two nonzero entries. By assumption, the set {1, . . . , m} can be partitioned
into two subsets M1 and M2 so that if a column has two nonzero entries, the following hold:

(1) If both nonzero entries have the same sign, then one is in a row contained in M1 and
the other is in a row contained in M2. (2) If the two nonzero entries have opposite sign, then
both are in rows contained in the same subset. It follows that

| ∑

i∈M1

eij −
∑

i∈M2

eij| ≤ 1, ∀ j = 1, . . . , n. (1)

Let I be any subset of {1, . . . , m}. Then I1 = I∩M1 and I2 = I∩M2 constitute a partition
of I, which in view of Eq. (1) satisfies

| ∑

i∈I1

eij −
∑

i∈I2

eij| ≤ 1, ∀ j = 1, . . . , n.

Hence E is totally unimodular.

5.5.9

Let S = {x ∈ P | x ∈n}. Let X1, X2, and X3 be the sets described by conditions 1,
2, and 3, respectively. Consider x ∈ S. Since Ax ≤ b and u ≥ 0, it follows that x ∈ X1.
Furthermore, x ≥ 0, so rounding down the coefficients on the left hand side can only make
the LHS smaller. Hence, x ∈ X2. Finally, since x consists of integer components and so does
buT ajc, it follows that buT ajcxj is integer and we can round down the right hand side and
still satisfy the inequality. Thus x ∈ X3.

Note that it is possible we could find x ∈ P such that x /∈ X3 if x is not integer. Thus, we
potentially can “cut off” points in P that are noninteger while retaining all integer points, as
argued above. This commonly used practice in integer programming is known as generating
cutting planes.

4

