
6.252 NONLINEAR PROGRAMMING

LECTURE 4

CONVERGENCE ANALYSIS OF GRADIENT METHODS

LECTURE OUTLINE

• Gradient Methods - Choice of Stepsize

• Gradient Methods - Convergence Issues



CHOICES OF STEPSIZE I

• Minimization Rule: αk is such that

f(xk + αkdk) = min
α≥0

f(xk + αdk).

• Limited Minimization Rule: Min over α ∈ [0, s]

• Armijo rule:

σα∇f(xk)'dk

α∇f(xk)'dk
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Unsuccessful  Stepsize
Trials

β2sStepsize αk
 = 

f(xk + αdk) - f(xk) 

Start with s and continue with βs, β2s, ..., until βms falls

within the set of α with

f(xk) − f(xk + αdk) ≥ −σα∇f(xk)′dk.



CHOICES OF STEPSIZE II

• Constant stepsize: αk is such that

αk = s : a constant

• Diminishing stepsize:

αk → 0

but satisfies the infinite travel condition

∞∑
k=0

αk = ∞



GRADIENT METHODS WITH ERRORS

xk+1 = xk − αk(∇f(xk) + ek)

where ek is an uncontrollable error vector

• Several special cases:

− ek small relative to the gradient; i.e., for all
k, ‖ek‖ < ‖∇f(xk)‖

∇f(xk)

ek

gk

Illustration of the descent

property of the direction

gk = ∇f(xk) + ek.

− {ek} is bounded, i.e., for all k, ‖ek‖ ≤ δ,
where δ is some scalar.

− {ek} is proportional to the stepsize, i.e., for
all k, ‖ek‖ ≤ qαk, where q is some scalar.

− {ek} are independent zero mean random vec-
tors



CONVERGENCE ISSUES

• Only convergence to stationary points can be
guaranteed

• Even convergence to a single limit may be hard
to guarantee (capture theorem)

• Danger of nonconvergence if directions dk tend
to be orthogonal to ∇f(xk)

• Gradient related condition:

For any subsequence {xk}k∈K that converges to
a nonstationary point, the corresponding subse-
quence {dk}k∈K is bounded and satisfies

lim sup
k→∞, k∈K

∇f(xk)′dk < 0.

• Satisfied if dk = −Dk∇f(xk) and the eigenval-
ues of Dk are bounded above and bounded away
from zero



CONVERGENCE RESULTS

CONSTANT AND DIMINISHING STEPSIZES

Let {xk} be a sequence generated by a gradient
method xk+1 = xk +αkdk, where {dk} is gradient
related. Assume that for some constant L > 0,
we have

‖∇f(x) −∇f(y)‖ ≤ L‖x − y‖, ∀ x, y ∈ �n,

Assume that either

(1) there exists a scalar ε such that for all k

0 < ε ≤ αk ≤ (2 − ε)|∇f(xk)′dk|
L‖dk‖2

or

(2) αk → 0 and
∑∞

k=0 αk = ∞.

Then either f(xk) → −∞ or else {f(xk)} con-
verges to a finite value and ∇f(xk) → 0.



MAIN PROOF IDEA
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α∇f(xk)'dk
  + (1/2)α2L||dk||2

×

α∇f(xk)'dk
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f(xk + αdk) - f(xk) 

The idea of the convergence proof for a constant stepsize.

Given xk and the descent direction dk, the cost differ-

ence f(xk + αdk) − f(xk) is majorized by α∇f(xk)′dk +
1
2α2L‖dk‖2 (based on the Lipschitz assumption; see next

slide). Minimization of this function over α yields the step-

size

α =
|∇f(xk)′dk|

L‖dk‖2

This stepsize reduces the cost function f as well.



DESCENT LEMMA

Let α be a scalar and let g(α) = f(x + αy). Have

f(x + y) − f(x) = g(1) − g(0) =
∫ 1

0

dg

dα
(α) dα

=
∫ 1

0

y′∇f(x + αy) dα

≤
∫ 1

0

y′∇f(x) dα

+
∣∣∣∣
∫ 1

0

y′
(
∇f(x + αy) −∇f(x)

)
dα

∣∣∣∣
≤

∫ 1

0

y′∇f(x) dα

+
∫ 1

0

‖y‖ · ‖∇f(x + αy) −∇f(x)‖dα

≤ y′∇f(x) + ‖y‖
∫ 1

0

Lα‖y‖ dα

= y′∇f(x) +
L

2
‖y‖2.



CONVERGENCE RESULT – ARMIJO RULE

Let {xk} be generated by xk+1 = xk+αkdk, where
{dk} is gradient related and αk is chosen by the
Armijo rule. Then every limit point of {xk} is sta-
tionary.

Proof Outline: Assume x is a nonstationary limit
point. Then f(xk) → f(x), so αk∇f(xk)′dk → 0.

• If {xk}K → x, lim supk→∞, k∈K ∇f(xk)′dk < 0,
by gradient relatedness, so that {αk}K → 0.

• By the Armijo rule, for large k ∈ K

f(xk)−f
(
xk +(αk/β)dk

)
< −σ(αk/β)∇f(xk)′dk.

Defining pk = dk

‖dk‖ and αk = αk‖dk‖
β , we have

f(xk) − f(xk + αkpk)
αk

< −σ∇f(xk)′pk.

Use the Mean Value Theorem and let k → ∞.
We get −∇f(x)′p ≤ −σ∇f(x)′p, where p is a limit
point of pk – a contradiction since ∇f(x)′p < 0.


