1 Review Concepts

Decide whether the following claims are true or false. Assume functions are twice continuously differentiable unless otherwise stated.

Unconstrained Optimization

Optimality Conditions

(01) For an unconstrained problem, if x^* satisfies $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*) \succeq 0$, then x^* is a local minimum.

(02) The converse of the previous claim.

(03) $\nabla f(x^*) = 0$ is a necessary and sufficient condition for x^* to a strict local minimum if f is convex.

(04) For the quadratic $\frac{1}{2}x^T Q x - b^T x$, $Q \succ 0$, $Q^{-1} b$ is the global minimum.

(05) If instead $Q \succeq 0$ in the previous claim, then it is possible to have zero solutions or infinite solutions.

(06) If the feasible set of an optimization problem is closed, then there exists a global minimum.

Gradient Methods

dbbrown@mit.edu
(07) Our convergence results refer only to convergence towards local minima, but not maxima.

(08) Our convergence results refer only to convergence towards local optima.

(09) In order to prove a gradient method converges, it is crucial to show that the sequence of direction vectors is gradient related.

(10) A gradient related method using the Armijo or minimization stepsize rules is guaranteed to converge to a stationary point.

(11) The same applies if we use a constant or diminishing stepsize, but the rate of convergence is typically much slower.

(12) The condition number of the Hessian near a stationary point is a good estimate of the asymptotic convergence rate of the steepest descent method.

Newton’s Method

(13) Newton’s method has a quadratic rate of convergence.

(14) Since we minimize the second-order Taylor series at each step in Newton’s method, and, close to a stationary point the second-order Taylor series approximates the function well, it is impossible for (pure) Newton’s method to converge to a local maximum.

(15) If a problem is ill-conditioned, we would be wise to scale it before using Newton’s method.

(16) If we use a line minimization stepsize rule in conjunction with Newton’s method, then there is no need to correct the Hessian when it is not positive definite (e.g., with modified Cholesky factorization).

Least-Squares Problems

(17) The gradient of $g : \mathbb{R}^n \mapsto \mathbb{R}^m$ is an $n \times m$ matrix.

(18) The gradient of $1/2\|g(x)\|^2$ (where g is as in the previous claim) is an n-vector written as $\nabla g(x)g(x)$.

\[\]
The Gauss-Newton method is computationally more involved than Newton’s method, but it tends to converge in fewer iterations for least-squares problems.

If you do not understand extended Kalman filters, you are in trouble for this exam.

Conjugate Direction Methods

The conjugate gradient method minimizes a strictly convex quadratic function in no more than k steps, where k is the number of distinct eigenvalues of the Hessian.

We converge faster in the previous claim if we invoke the preconditioned conjugate gradient method (i.e., we use scaling).

Optimization Over a Convex Set

Optimality Conditions

$\nabla f(x^*)^T(x - x^*) \geq 0 \forall x \in X$ where f is convex and X is convex holds if and only if x^* is a global minimum of the problem.

The problem $\min f(x)$ subject to $h_i(x) = 0$, $i = 1, \ldots, m$ and $g_j(x) \geq 0$, $j = 1, \ldots, r$ is convex if f and g_j are convex and h_i is affine.

If X is a nonempty, closed subset of \mathbb{R}^n, then $\forall z \in \mathbb{R}^n$, $[z]_+$ is unique.

Feasible Direction Methods

The convergence results for feasible direction methods are completely analogous to the gradient descent convergence results from unconstrained optimization.

The conditional gradient method with a minimization stepsize would solve a linear program (assuming it has an optimal solution) in a single step.

The gradient projection method is computationally more expensive per iteration than the conditional gradient method.

Two-metric projection methods are computationally more expensive per iteration than the gradient projection method.
Affine scaling is a technique for solving linear programs.

Lagrange Multiplier Theory

Necessary and Sufficient Conditions for Equality Constraints

(31) If x^* is a local minimum of f subject to $h(x) = 0$ and a regular point, then there exists a unique vector λ^* such that

\[
\nabla f(x^*) + \sum_{i=1}^{m} \lambda_i^* \nabla h_i(x^*) = 0,
\]

\[
y^T \left(\nabla^2 f(x^*) + \sum_{i=1}^{m} \lambda_i^* \nabla^2 h_i(x^*) \right) y \geq 0 \quad \forall y \in V(x^*),
\]

where $V(x^*) = \{ y | \nabla h_i(x^*)^T y = 0, \quad i = 1, \ldots, m \}$.

(32) The sufficiency condition is just the converse of the previous statement (with the second-order condition being strict).

(33) The sensitivity theorem requires regularity of the unperturbed optimal solution x^*.

Inequality Constraints

(34) If x^* is a local minimum of f subject to $h_i(x) = 0, \quad i = 1, \ldots, m$, $g_j(x) \leq 0, \quad j = 1, \ldots, r$, and a regular point, then there exist unique vectors $\lambda^* \in \mathbb{R}^m$, $\mu^* \in \mathbb{R}^r$ such that

\[
\nabla_x L(x^*, \lambda^*, \mu^*) = 0,
\]

\[
\mu_j = 0 \quad \forall j \notin A(x^*),
\]

\[
y^T \nabla^2_{xx} L(x^*, \lambda^*, \mu^*) y \geq 0, \quad \forall y \in V(x^*),
\]

where $V(x^*) = \{ y | \nabla h_i(x^*)^T y = 0, \quad i = 1, \ldots, m \}$ and $A(x^*)$ is the set of indices of active constraints at x^*.

(35) The KKT sufficiency condition is the same as the KKT necessity condition except that we have strict inequalities and we do not require regularity.
A general sufficiency condition states that if x^* is feasible, $\mu_j^* \geq 0$, $\mu_j = 0 \ \forall \ j \notin A(x^*)$, and $x^* = \arg\min_{x \in X} L(x, \mu^*)$, then x^* is a global minimum.

A corollary to the above statement is that, if f and g are convex (and $X = \mathbb{R}^n$), we can replace the last condition with $\nabla f(x^*) + \sum_{j=1}^r \mu_j^* \nabla g_j(x^*) = 0$.

If the constraint inequalities are all affine, then we do not require regularity of x^* in the necessity condition.

If we have an optimal solution to minimizing a convex function over a convex set, then the corresponding dual problem has an optimal solution, and the primal and dual optimal values are equal.

The dual function (for primal minimization problems) $q(\mu)$ is a convex function of μ.

2 Examples

Example 2.1. Equality-constrained least-squares.
(Taken from [1], chapter 5). Compute the optimal solution to

$$\begin{align*}
\text{minimize} & \quad \|Ax - b\|_2^2 \\
\text{subject to} & \quad Gx = h,
\end{align*}$$

where $A \in \mathbb{R}^{m \times n}$ has rank n and $G \in \mathbb{R}^{p \times n}$ has rank p.

Example 2.2. Robust LP.
(Modified from [1], chapter 5). Consider an LP of the form

$$\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad Ax \leq b.
\end{align*}$$

Assume now that the data matrix $A \in \mathbb{R}^{m \times n}$ is not completely known. In particular, assume for each row a_i of A we have polyhedral uncertainty; that is, we know only that a_i belongs to some known polyhedron:

$$a_i \in \{y \mid D_i y \leq d_i\} \quad \forall i = 1, \ldots, m.$$

The robust counterpart of the LP above is the minimum value of $c^T x$ over all x such that x is feasible for all possible data in the uncertainty set. Show that the robust counterpart may be formulated as another LP.
References