Outline

- Basics of switching
- Blocking
- Interconnection examples
- Complexity
- Recursive constructions

Switching and Routing

- Switching is generally the establishment of connections on a circuit basis
- Routing is generally the forwarding of traffic on a datagram basis
- Routing requires switching but not vice-versa – routing uses connections which are permanently or temporarily set up to in order to forward datagrams (those datagrams may be in circuit form, for instance VPs and VCs)
Packet routers

A packet switch consists of a routing engine (table look-up), a switch scheduler, and a switch fabric.

The routing engine looks up the packet address in a routing table and determines which output port to send the packet.

- Packet is tagged with port number
- The switch uses the tag to send the packet to the proper output port

Switch fabrics

- Simplest switch fabric is simply a shared bus
 - Most of the processing is done in line cards
 - Route table look-up
 - Line cards buffer the packets
 - Line card send packets to proper output
 - Bus bandwidth must be N times LC speed (N ports)
- In general a switch fabric replaces the bus
- Switch fabrics are created from certain building blocks of smaller switches arranged in stages
- Simplest switch is a 2x2 switch, which can be either in the through or crossed position
Definitions

- A connection state is a mapping from the array of inputs to that of outputs; connections are either point-to-point or multicast
- Basic switch building blocks are:
 - the distributor
 - the concentrator
 - the 2x2 2-state point-to-point switch (switching cell)

Building up

- Interconnection network: finite collection of nodes together with a set of interconnection lines such that
 - every node is an object with an array of inputs and an array of outputs
 - an interconnection line leads from an output of one node to an input of another node
 - every I/O of a node is incident with at most one interconnection line
 - an I/O is called external if it is not incident with any interconnection line
- A route from an external input to an external output is a chain of distinct \((a_0, b_0, a_1, b_1, \ldots, a_k, b_k)\) where \(a_0\) and \(b_k\) are external, \(b_{j-1}\) is interconnected to \(a_j\)
Building up

- An interconnection network is called a switching network when:
 - every node qualifies to be a switch through proper specification of connection states
 - the network is routable (there exists a route from every external input to every external output)
 - an ordering is specified on external inputs and on external outputs
- Unique routing interconnection networks: all routes from an external input to an external output are parallel, that is \((a_0, b_0, a_1, b_1, \ldots, a_k, b_k)\) and \((a_0, b'_0, a'_1, b'_1, \ldots, a'_k, b_k)\) are such that \(a_j, a'_j\) reside on the same nodes and \(b_j, b'_j\) reside on the same node
- Otherwise: alternate routing

Blocking

- A \(m \times n\) unique routing network is called a nonblocking network if for any integer \(k < \min(m,n)+1\), any \(k\) external inputs, any \(k\) external outputs and pairing between these external I/O, there exist \(k\) disjoint routes for the matched pairs
- For a routable network, the same property is that of a rearrangeably nonblocking, or rearrangeable network
- An interconnection network is strictly non-blocking if requests for routes are always granted under the rule of arbitrary route selection, wide-sense non-blocking if there exists an algorithm for route selection that grants all requests
Blocking, Multi-stage networks

- Main connection between rearrangeability and non-blocking property is given by the following theorem:

 A switching network composed of non-blocking switches is rearrangeable iff it constructs a non-blocking switch

- A common means of building interconnection networks is to use a multi-stage architecture:
 - every interconnection line is between two stages
 - every external input is on a first-stage node
 - every external output is on a final-stage node
 - nodes within each stage are linearly ordered

Interconnection networks

- N input, Log(N) stages with N/2 modules per stage
 Example: Omega (shuffle exchange network)

 ![Diagram of an Omega network]

- Notice the order of inputs into a stage is a shuffle of the outputs from the previous stage: (0,4,1,5,2,6,3,7)
- Easily extended to more stages
- Any output can be reached from any input by proper switch settings
 - Not all routes can be done simultaneously
 - Exactly one route between each OD pair
Interconnection networks

- Another example of a multi-stage interconnection network
- Built using the basic 2x2 switch module
- Recursive construction
 - Construct an N by N switch using two N/2 by N/2 switches and a new stage of N/2 basic (2x2) modules
 - N by N switch has Log₂(N) stages each with N/2 basic (2x2) modules

Complexity issues

- There are many different parameters that are used to consider the complexity of an interconnection network
- Line complexity: number of interconnection lines
- Node (cell) complexity: number of small nodes (mxn where m < 3 and n < 3)
- Depth: maximum number of nodes on a route (assuming an acyclic interconnection network)
- Entropy of a switch: log of the number of connections states
- What relations exist between complexity and the capabilities of a switch?
Complexity

• The depth of a mxn routable interconnection network is at least \(\max(\log(m), \log(n)) \).
• Proof: for a depth \(d \), there are at most \(2^d \) external outputs. Since we have routability, \(n < 2^{d+1} \) and \(m < 2^{d+1} \).
• When a switching network is composed of 2-state switches, the component complexity of the network is at least the entropy of the switch.
• Proof: for \(E \) the number of switches, there are \(2^E \) ways to form a combination of one connection state in every node. Each combination corresponds to at most one connection state in the node.

Complexity

• When a nxn rearrangeable network is composed of small nodes, its component complexity is at least \(\log(N!) \).
• Proof: if we take every small node to be replaced by a 2-state point-to-point switch, then we have a non-blocking switch. Thus, there is a different connection state for everyone of the \(n! \) one-to-one mapping between the \(n \) inputs and the \(n \) outputs. We now use the relation for networks composed of 2-state switches.
• Note: using Stirling’s formula, we can obtain an approximate simple bound for component complexity.
• Component complexity:
 \[n! = \sqrt{2\pi n} \left(\frac{n}{e} \right)^n \]

 \[\Rightarrow \log(n!) = n \log(n) - 1.44n + \log\left(\frac{n}{2}\right) + \frac{\log(2\pi)}{2} \]

 so component complexity is bounded from below by
 \[n \log(n) - 1.44n + \Omega(\log(n)) \]

• Relation between line and component complexity:
 component complexity +mn = line complexity +m + n

• If a mxn nonblocking network is composed of n_{12} 1x2 nodes, n_{21} 2x1 nodes, n_{22} cells, plus possibly crosspoints (edges), then
 \[n_{12} + n_{21} + 4 n_{22} = 2mn - m - n \]

• Corollary: a nxn non-blocking network composed of small nodes has component complexity at least 0.5(n^2 - n)

• Note: directed acyclic graphs can be seen as a special case of a network - a crosspoint network.

• We have basic complexity properties, but how do we build networks?
Recursive 2-stage construction

- 2-stage interconnection with parameters m and n is composed of n mxm input nodes and m nxn output nodes interconnected by a coordinate interchange (static)
- Constructions using trees:
 - 16x16
 - 4x4 4x4
 - 2x2 2x2 2x2 2x2
 - 60x60
 - 6x6 10x10
 - 2x2 3x3 5x5 2x2

Divide and conquer
- Basic blocks need not be 2x2, trees need not be balanced

Benes approach

- A three stage approach in which we use as the middle stage two networks of size $2^{n-1} \times 2^{n-1}$ to build a network of size $2^n \times 2^n$
Generalized 3-stage approach

- We denote by \([nxm, rxp, mxq]\) the 3-stage network with \(r\) \(nxm\) input nodes, \(m rxp\) middle nodes, \(p mxq\) output nodes such that
 - output \(y\) of input node \(x\) is linked to input \(x\) of middle node \(y\)
 - output \(u\) of middle node \(y\) is linked to input \(y\) of output node \(u\)
- Rearrangeability theorem: the 3-stage network is rearrangeable iff
 \[m \geq \min \{ \max \{n, q\}, nr, pq \}\]
- It is strictly non-blocking iff
 \[m \geq \min \{ n + q - 1, nr, pq \}\]

Conclusions

- Basic switching theory gives a foundation for the construction of networks to match inputs to outputs
- Complexity results in terms of number of states and hardware complexity effectively characterize the realizable switches under certain parameters
- Recursive constructions give a means of generating networks of increasing size from smaller entities
- To go beyond these approaches, require an algebraic set-up considering permutation matrices