Compression and Separation
Signals

- Channel has a physical signal traversing a physical medium
- Electromagnetic signal
- Polarization of the wave

\[\text{Propagation of the wave} \]
• What do we mean by frequency?
• We can express a signal by a superposition of sinusoids, each of them with its own frequency
• A continuous signal is bandlimited to a bandwidth W at carrier frequency f_0 if it can be expressed in terms of sinusoids in a range of frequencies of width W around a frequency f_0
• If we multiply the signal by a frequency shift, then we operate around 0, the baseband representation
Nyquist sampling theorem

- We can wholly reconstruct a signal from its periodic samples as long as those samples are within $1/W$ of each other.
- Continuous signal $x(t)$, discrete time signal is $x[n] = x(nT)$ where $T = 1/W$.
Modulation: creating signals

- How we generate signals, by varying amplitude, phase, frequency

 - On-off keyed (OOK): send 1, 0, a special case of amplitude modulation

 ![OOK waveform]

- Frequency-shift keyed (FSK), change frequencies:

 ![FSK waveforms]

- Phase-shift key (PSK):

 ![2 PSK and 4 PSK diagrams]
• Pulse position modulation (PPM)

• Combining phase and amplitude, for instance:

PAM 5x5 symbol code for 100BASE-T2 PHY
• Canonical channel model: signal goes into channel, there is a non-additive effect and addition of noise

\[Y[n] = g X[n] + N[n] \]

\[Y[n] = g^{-1} X[n-1] + g_0 X[n] + N[n] \]

INTERSYMBOL-INTERFERENCE (ISI)

• Very commonly, G is a multiplicative effect:
 • \[Y[n] = g X[n] + N[n] \]
 • \[Y[n] = g_{-1} X[n-1] + g_0 X[n] + N[n] \]
Effect of the channel

• If we put in a certain string of input signals $X[1], X[2], \ldots$, then we have a certain probability of having a certain output string $Y[1], Y[2], \ldots$

• The net effect is what is the probability of having a certain output when a given input is given
Channel model

• The channel is described by an input alphabet, an output alphabet, a set of probabilities on the input alphabet and a set of channel transitions, for a memoryless channel (on every bit the channel behaves independently of other times):

• Channel with input alphabet of size $k+1$ and output alphabet of size $m+1$

• $p(y \mid x)$ is transition probability, probability of getting output y for input x
How do we determine the probabilities?

- We want to get to \(p(x \mid y) \)
- Use Bayes’s rule: \(p(x \mid y) = \frac{p(x, y)}{p(y)} \)
- Also \(p(x, y) = p(y \mid x) p(x) \)
- \(p(y) = \sum_i p(y \mid x_i) p(x_i) \)
- For the case where all the inputs have the same probability, then \(p(x \mid y) = \frac{1/n \ p(y \mid x)}{\sum \ p(y \mid x_i) \ } \)

- How can we try to make up for the effect of the channel?
When do we use codes

• Two different types of codes:
 – source codes: compression
 – channel codes: error-correction
 – Source-channel separation theorem says the two can be done independently for a large family of channels

stream → Source encoder → Channel encoder → Channel decoder → Source decoder

Modulator, channel, receiver, etc...
Source codes for random variables

Notation: The set of all strings over a finite alphabet \mathcal{D} is denoted by \mathcal{D}^*. W.l.o.g. assume $\mathcal{D} = 0, 1, \ldots, D - 1$ where $D = |\mathcal{D}|$.

Definition: A source code for a random variable X is a map

$$C : \mathcal{X} \mapsto \mathcal{D}^*$$

$$x \rightarrow C(x)$$

where $C(x)$ is the codeword associated with x

$l(x)$ is the length of $C(x)$

The length of a code C is

$$L(C) = E_X[l(X)]$$
Source codes for random variables

A code is instantaneous (or prefix code) iff no codeword of C is a prefix of any other codeword C

Visually: Construct a tree whose leaves are codewords
Kraft inequality

Any instantaneous code C with code lengths l_1, l_2, \ldots, l_m must satisfy

$$\sum_{i=1}^{m} D^{-l_i} \leq 1$$

Conversely, given lengths l_1, l_2, \ldots, l_m that satisfy the above inequality, there exists an instantaneous code with these codeword lengths

Proof: Construct a D-ary tree T (codewords are leaves)

Extend tree T to D-ary tree T' with depth l_{MAX}, total number of leaves is $D^{l_{MAX}}$
Kraft inequality

Each leaf of T' is a descendant of at most one leaf of T.

Leaf in T corresponding to codeword $C(i)$ has exactly $D^{l_{MAX} - l_i}$ descendants in T' (1 if $l_i = l_{MAX}$).

Summing over all leaves of T gives

$$
\sum_{i=1}^{m} D^{l_{MAX} - l_i} \leq D^{l_{MAX}}
$$

$$
\Rightarrow \sum_{i=1}^{m} D^{-l_i} \leq 1
$$
Kraft inequality

Given lengths l_1, l_2, \ldots, l_m satisfying Kraft’s inequality, we can construct a tree by assigning $C(i)$ to first available node at depth l_i.
Optimal codes

Optimal code is defined as code with smallest possible $L(C)$ with respect to P_X

Optimization:

minimize $\sum_{x \in \mathcal{X}} P_X(x)l(x)$

subject to $\sum_{x \in \mathcal{X}} D^{-l(x)} \leq 1$

and $l(x)$s are integers
Optimal codes

Let us relax the second constraint and replace the first with equality to obtain a lower bound

\[J = \sum_{x \in \mathcal{X}} P_X(x) l(x) + \lambda \left(\sum_{x \in \mathcal{X}} D^{-l(x)} - 1 \right) \]

Use Lagrange multipliers and set \(\frac{\partial J}{\partial l(i)} = 0 \)

\[P_X(i) - \lambda \log(D) D^{-l(i)} = 0 \]

equivalently \(D^{-l(i)} = \frac{P_X(i)}{\lambda \log(D)} \)

Using Kraft inequality (now relaxed to equality) yields

\[1 = \sum_{i \in \mathcal{X}} D^{-l(x)} = \sum_{i \in \mathcal{X}} \frac{P_X(i)}{\lambda \log(D)} \]

So \(\lambda = \frac{1}{\log(D)} \), yielding \(l(i) = -\log_D(P_X(i)) \)
Thus a bound on the optimal code length is

\[- \sum_{i \in X} P_X(i) \log_D(P_X(i)) = H_D(X)\]

This is lower bound, equality holds iff P_X is D-adic, $P_X(i) = D^{-l(i)}$ for integer $l(i)$.
Optimal codes

The optimal codelength L^* satisfies

$$H_D(X) \leq L^* \leq H_D(X) + 1$$

Upper bound: Take $l(i) = [\log_D(P_X(i))]$

$$\sum_{i \in X} D[-\log_D(P_X(i))] \leq \sum_{i \in X} P_X(i) = 1$$

Thus these lengths satisfy Kraft’s inequality and we can create a prefix-free code with these lengths

$$L^* \leq \sum_{i \in X} P_X(i) [-\log_D(P_X(i))]$$

$$\leq \sum_{i \in X} P_X(i)(-\log_D(P_X(i)) + 1)$$

$$= H_D(X) + 1$$

We call these types of codes Shannon codes
Optimal codes

Is this as tight as it gets?

Consider coding several symbols together

\[C : \mathcal{X}^n \rightarrow \mathcal{D}^* \]

Expected codeword length is \(\sum_{x^n \in \mathcal{X}^n} P_{X^n}(x^n) l(x^n) \)

Optimum satisfies \(H_D(X^n) \leq L^* \leq H_D(X^n) + 1 \)

If \(X^n \) is an i.i.d. sequence, then

\[H_D(X^n) = nH_D(X) \]

So per symbol codeword length is \(H_D(X) \leq \frac{L^*}{n} \leq H_D(X) + \frac{1}{n} \)

Hence \(\lim_{n \to \infty} \frac{L^*}{n} = H_D(X) \)